We establish a common coupled fixed point theorem for hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction on a noncomplete metric space, which is not partially ordered. It is to be noted that to find coupled oincidence point, we do not employ the condition of continuity of any mapping involved therein. An example is also given to validate our results. We improve, extend and generalize several known results.
1. INTRODUCTION
Let (
X
,
d
) be a metric space. We denote by 2
X
the class of all nonempty subsets of
X
, by
CL
(
X
) the class of all nonempty closed subsets of
X
, by
CB
(
X
) the class of all nonempty closed bounded subsets of
X
and by
K
(
X
) the class of all nonempty compact subsets of
X
. A functional
H
:
CL
(
X
) ×
CL
(
X
) → ℝ
+
∪ {+∞} is said to be the Pompeiu-Hausdorff generalized metric induced by
d
is given by
for all
A
,
B
∈
CB
(
X
), where
D
(
x
,
A
) = inf
a∈A
d
(
x
,
a
) denote the distance from
x
to
A
⊂
X
. For simplicity, if
x
∈
X
, we denote
g
(
x
) by
gx
.
Markin
[23]
initiated to study the existence of fixed points for multivalued contractions and nonexpansive mappings using the Hausdorff metric which was further studied by many authors under different contractive conditions. The theory of multivalued mappings has application in control theory, convex optimization, differential inclusions and economics.
Bhaskar and Lakshmikantham
[6]
established some coupled fixed point theorems and applied these results to study the existence and uniqueness of solution for periodic boundary value problems, which were later extended by Lakshmikantham and Ciric
[19]
. For more details, see
[5
,
7
,
8
,
9
,
10
,
16
,
17
,
21
,
22
,
27
,
30]
.
Samet et al.
[28]
claimed that most of the coupled fixed point theorems for single valued mappings on ordered metric spaces are consequences of well-known fixed point theorems.
The concepts related to coupled fixed point theory for multivalued mappings were extended by Abbas et al.
[2]
and obtained coupled coincidence point and common coupled fixed point theorems involving hybrid pair of mappings satisfying generalized contractive conditions in complete metric spaces. Very few researcher gave attention to coupled fixed point problems for hybrid pair of mappings including
[1
,
2
,
11
,
12
,
13
,
14
,
15
,
20
,
29]
.
In
[2]
, Abbas et al. introduced the following for multivalued mappings:
Definition 1.1.
Let
X
be a nonempty set,
F
:
X
×
X
→ 2
X
(a collection of all nonempty subsets of
X
) and
g
be a self-mapping on
X
. An element (
x
,
y
) ∈
X
×
X
is called
-
(1) acoupled fixed pointofFifx∈F(x,y) andy∈F(y,x).
-
(2) acoupled coincidence pointof hybrid pair {F,g} ifgx∈F(x,y) andgy∈F(y,x).
-
(3) acommon coupled fixed pointof hybrid pair {F,g} ifx=gx∈F(x,y) andy=gy∈F(y,x).
We denote the set of coupled coincidence points of mappings
F
and
g
by
C
(
F
,
g
). Note that if (
x
,
y
) ∈
C
(
F
,
g
), then (
y
,
x
) is also in
C
(
F
,
g
).
Definition 1.2.
Let
F
:
X
×
X
→ 2
X
be a multivalued mapping and
g
be a self-mapping on
X
. The hybrid pair {
F
,
g
} is called
w−compatible
if
gF
(
x
,
y
) ⊆
F
(
gx
,
gy
) whenever (
x
,
y
) ∈
C
(
F
,
g
).
Definition 1.3.
Let
F
:
X
×
X
→ 2
X
be a multivalued mapping and
g
be a self-mapping on
X
. The mapping
g
is called
F−weakly commuting
at some point (
x
,
y
) ∈
X
×
X
if
g
2
x
∈
F
(
gx
,
gy
) and
g
2
y
∈
F
(
gy
,
gx
).
Lemma 1.4
(
[26]
)
.
Let
(
X
,
d
)
be a metric space
.
Then, for each a
∈
X and B
∈
K(X), there is b
0
∈
B such that D
(
a
,
B
) =
d
(
a
,
b
0
),
where D
(
a
,
B
) = inf
b∈B
d
(
a
,
b
).
Nadler
[25]
extended the famous Banach Contraction Principle
[4]
from single-valued mapping to multivalued mapping. Mizoguchi and Takahashi
[24]
proved the following generalization of Nadler’s fixed point theorem for weak contraction:
Theorem 1.5.
Let
(
X
,
d
)
be a complete metric space and
T
:
X
→
CB
(
X
)
be a multivalued mapping
.
Assume that
H(T x, T y) ≤ Ψ(d(x, y))d(x, y),
for all x
,
y
∈
X
,
where Ψ is a function from
[0, ∞)
into
[0, 1)
satisfying
for all t
≥ 0.
Then T has a fixed point
.
Suzuki
[31]
gave its very simple proof. Amini-Harandi and O’Regan
[3]
obtained a generalization of Mizoguchi and Takahashi’s fixed point theorem.
In
[8]
, Ciric et al. proved coupled fixed point theorems for mixed monotone mappings satisfying a generalized Mizoguchi-Takahashi’s condition in the setting of ordered metric spaces. Main results of Ciric et al.
[8]
extended and generalized the results of Bhaskar and Lakshmikantham
[6]
, Du
[17]
and Harjani et al.
[18]
.
In this paper, we prove a common coupled fixed point theorem for hybrid pair of mappings under generalized Mizoguchi-Takahashi contraction on a noncomplete metric space, which is not partially ordered. It is to be noted that to find coupled coincidence point, we do not employ the condition of continuity of any mapping involved therein. We improve, extend and generalize the results of Amini-Harandi and O’Regan
[3]
, Bhaskar and Lakshmikantham
[6]
, Ciric et al.
[8]
, Du
[17]
, Harjani et al.
[18]
and Mizoguchi and Takahashi
[24]
. The effectiveness of our generalization is demonstrated with the help of an example.
2. MAIN RESULTS
Let Ф denote the set of all functions
φ
: [0, +∞) → [0, +∞) satisfying
Let Ψ denote the set of all functions
Ψ
: [0, +∞) → [0, 1) which satisfies lim
r→t+
Ψ
(
r
) < 1 for all
t
≥ 0. For example, if
φ
(
t
) = ln(
t
+ 1) and
. Obviously, then
φ
∈ Φ and
Ψ
∈ Ψ, because
φ
is non-decreasing, positive in (0, +∞),
φ
(0) = 0 and
. Also,
Theorem 2.1.
Let
(
X
,
d
)
be a metric space
,
F
:
X
×
X
→
K
(
X
)
and g
:
X
→
X
be two mappings
.
Assume that there exist some
φ
∈ Φ
and
Ψ
∈ Ψ
such that
for all x
,
y
,
u
,
v
∈
X
.
Furthermore assume that F
(
X
×
X
) ⊆
g
(
X
)
and g
(
X
)
is a complete subset of X
.
Then F and g have a coupled coincidence point. Moreover
,
F and g have a common coupled fixed point
,
if one of the following conditions holds
:
-
(a)F and g are w−compatible. limn→∞gnx=u andlimn→∞gny=v for some(x,y) ∈C(F,g)and for some u,v∈X and g is continuous at u and v.
-
(b)g is F−weakly commuting for some(x,y) ∈C(F,g)and gx and gy are fixed points of g,that is,g2x=gx and g2y=gy.
-
(c)g is continuous at x and y. limn→∞gnu=x andlimn→∞gnv=y for some(x,y) ∈C(F,g)and for some u,v∈X.
-
(d)g(C(F,g))is a singleton subset of C(F,g).
Proof
. Let
x
0
,
y
0
∈
X
be arbitrary. Then
F
(
x
0
,
y
0
) and
F
(
y
0
,
x
0
) are well defined. Choose
gx
1
∈
F
(
x
0
,
y
0
) and
gy
1
∈
F
(
y
0
,
x
0
), because
F
(
X
×
X
) ⊆
g
(
X
). Since
F
:
X
×
X
→
K
(
X
), therefore by Lemma 1.4, there exist
z
1
∈
F
(
x
1
,
y
1
) and
z
2
∈
F
(
y
1
,
x
1
) such that
Since
F
(
X
×
X
) ⊆
g
(
X
), there exist
x
2
,
y
2
∈ X such that
z
1
=
gx
2
and
z
2
=
gy
2
.
Thus
Continuing this process, we obtain sequences {
x
n
} and {
y
n
} in
X
such that for all
n
∈ ℕ, we have
gx
n+1
∈
F
(
x
n
,
y
n
) and
gy
n+1
∈
F
(
y
n
,
x
n
) such that
which, by (
iφ
) and (2.1), implies
which, by the fact that
Ψ
< 1, implies
Similarly
Combining (2.2) and (2.3), we get
Since
φ
is non-decreasing, it follows that
Now (2.4) shows that {
φ
(max{
d
(
gxn
,
gx
n+1
),
d
(
gyn
,
gy
n+1
)})} is a non-increasing sequence. Therefore, there exists some
δ
≥ 0 such that
Since
Ψ
∈ Ψ, we have lim
r→δ+
Ψ
(
r
) < 1 and
Ψ
(
δ
) < 1. Then there exists
α
∈ [0, 1) and
ε
> 0 such that
Ψ
(
r
) ≤
α
for all
r
∈ [
δ
,
δ
+
ε
). From (2.5), we can take
n
0
≥ 0 such that
δ
≤
φ
(max{
d
(
gxn
,
gx
n+1
),
d
(
gyn
,
gy
n+1
)}) ≤
δ
+
ε
for all
n
≥
n
0
. Then from (2.1), for all
n
≥
n
0
, we have
Thus, for all
n
≥
n
0
, we have
Similarly, for all
n
≥
n
0
, we have
Combining (2.6) and (2.7), for all
n
≥
n
0
, we get
Since
φ
is non-decreasing, it follows that, for all
n
≥
n
0
,
Letting
n
→ ∞ in (2.8) and using (2.5), we obtain that
δ
≤
αδ
. Since
α
∈ [0, 1), therefore
δ
= 0. Thus
Since {
φ
(max{
d
(
gxn
,
gx
n+1
),
d
(
gyn
,
gy
n+1
)})} is a non-increasing sequence and
φ
is non-decreasing, then {max{
d
(
gxn
,
gx
n+1
),
d
(
gyn
,
gy
n+1
)}} is also a non-increasing sequence of positive numbers. This implies that there exists
θ
≥ 0 such that
Since
φ
is non-decreasing, we have
Letting
n
→ ∞ in this inequality, by using (2.9), we get 0 ≥
φ
(
θ
), which, by (
iiφ
), implies that
θ
= 0. Thus, by (2.10), we get
Suppose that max{
d
(
gxn
,
gx
n+1
),
d
(
gyn
,
gy
n+1
)} = 0, for some
n
≥ 0. Then, we have
d
(
gxn
,
gx
n+1
) = 0 and
d
(
gyn
,
gy
n+1
) = 0 which implies that
gxn
=
gx
n+1
∈
F
(
xn
,
yn
) and
gyn
=
gy
n+1
∈
F
(
yn
,
xn
), that is, (
xn
,
yn
) is a coupled coincidence point of
F
and
g
. Now, suppose that max{
d
(
gxn
,
gx
n+1
),
d
(
gyn
,
gy
n+1
)} ≠ 0, for all
n
≥ 0.
Denote
From (2.8), we have
Then, we have
On the other hand, by (
iiiφ
), we have
Thus, by (2.12) and (2.13), we have ∑max{
d
(
gxn
,
gx
n+1
),
d
(
gyn
,
gy
n+1
)} < ∞. It means that
and
are Cauchy sequences in
g
(
X
). Since
g
(
X
) is complete, therefore there exist
x
,
y
∈
X
such that
Now, since
gx
n+1
∈
F
(
xn
,
yn
) and
gy
n+1
∈
F
(
yn
,
xn
), therefore by using condition (2.1) and (
iφ
), we get
Since
φ
is non-decreasing, we have
Letting
n
→ ∞ in (2.15), by using (2.14), we obtain
which implies that
that is, (
x
,
y
) is a coupled coincidence point of
F
and
g
. Hence
C
(
F
,
g
) is nonempty.
Suppose now that (
a
) holds. Assume that for some (
x
,
y
) ∈
C
(
F
,
g
),
where
u
,
v
∈
X
. Since
g
is continuous at
u
and
v
. We have, by (2.16), that
u
and
v
are fixed points of
g
, that is,
As
F
and
g
are
w
−compatible, so
that is,
Now, by using (2.1) and (2.18), we obtain
Since
φ
is non-decreasing, we have
On taking limit as
n
→ ∞ in the above inequality, by using (2.16) and (2.17), we get
which implies that
Now, from (2.17) and (2.19), we have
that is, (
u
,
v
) is a common coupled fixed point of
F
and
g
.
Suppose now that (
b
) holds. Assume that for some (
x
,
y
) ∈
C
(
F
,
g
),
g
is
F
−weakly commuting, that is
g
2
x
∈
F
(
gx
,
gy
),
g
2
y
∈
F
(
gy
,
gx
) and
g
2
x
=
gx
,
g
2
y
=
gy
. Thus
gx
=
g
2
x
∈
F
(
gx
,
gy
) and
gy
=
g
2
y
∈
F
(
gy
,
gx
), that is, (
gx
,
gy
) is a common coupled fixed point of
F
and
g
.
Suppose now that (
c
) holds. Assume that for some (
x
,
y
) ∈
C
(
F
,
g
) and for some
u
,
v
∈
X
,
Since
g
is continuous at
x
and
y
, then
x
and
y
are fixed points of
g
, that is,
Since (
x
,
y
) ∈
C
(
F
,
g
), so we obtain
that is, (
x
,
y
) is a common coupled fixed point of
F
and
g
.
Finally, suppose that (
d
) holds. Let
g
(
C
(
F
,
g
)) = {(
x
,
x
)}. Then {
x
} = {
gx
} =
F
(
x
,
x
). Hence (
x
,
x
) is a common coupled fixed point of
F
and
g
. ⃞
Example.
Suppose that
X
= [0, 1], equipped with the metric
d
:
X
×
X
→ [0, +∞) defined as
d
(
x
,
y
) = max{
x
,
y
} and
d
(
x
,
x
) = 0 for all
x
,
y
∈
X
. Let
F
:
X
×
X
→
K
(
X
) be defined as
and
g
:
X
→
X
be defined as
Define
φ
: [0, +∞) → [0, +∞) by
and
Ψ
: [0, +∞) → [0, 1) defined by
Now, for all
x
,
y
,
u
,
v
∈
X
with
x
,
y
,
u
,
v
∈ [0, 1), we have
Case (
a
). If
x
=
u
, then
which implies that
Case (
b
). If
x
≠
u
with
x
<
u
, then
which implies that
Similarly, we obtain the same result for
u
<
x
. Thus the contractive condition (2.1) is satisfied for all
x
,
y
,
u
,
v
∈
X
with
x
,
y
,
u
,
v
∈ [0, 1). Again, for all
x
,
y
,
u
,
v
∈
X
with
x
,
y
∈ [0, 1) and
u
,
v
= 1, we have
which implies that
Thus the contractive condition (2.1) is satisfied for all
x
,
y
,
u
,
v
∈
X
with
x
,
y
∈ [0, 1) and
u
,
v
= 1. Similarly, we can see that the contractive condition (2.1) is satisfied for all
x
,
y
,
u
,
v
∈
X
with
x
,
y
,
u
,
v
= 1. Hence, the hybrid pair {
F
,
g
} satisfies the contractive condition (2.1), for all
x
,
y
,
u
,
v
∈
X
. In addition, all the other conditions of Theorem 2.1 are satisfied and
z
= (0, 0) is a common coupled fixed point of hybrid pair {
F
,
g
}. The function
F
:
X
×
X
→
K
(
X
) involved in this example is not continuous at the point (1, 1) ∈
X
×
X
.
Remark 2.2.
We improve, extend and generalize the results of Ciric et al.
[8]
in the sense that
-
(i) We prove our result for hybrid pair of mappings.
-
(ii) We prove our result in the framework of non-complete metric space (X,d) and the product setX×Xis not empowered with any order.
-
(iii) We prove our result without the assumption of continuity and mixed gmonotone property for mappingF:X×X→K(X).
-
(iv) The functionsφ: [0, +∞) → [0, +∞) andΨ: [0, +∞) → [0, 1) involved in our theorem and example are discontinuous.
If we put
g
=
I
(the identity mapping) in Theorem 2.1, we get the following result:
Corollary 2.3.
Let
(
X
,
d
)
be a complete metric space
,
F
:
X
×
X
→
K
(
X
)
be a mapping
.
Assume that there exist some
φ
∈ Φ
and
Ψ
∈ Ψ
such that
for all
x
,
y
,
u
,
v
∈
X
.
Then F has a coupled fixed point
.
If we put
for all
t
≥ 0 in Theorem 2.1, then we get the following result:
Corollary 2.4.
Let
(
X
,
d
)
be a metric space
,
F
:
X
×
X
→
K
(
X
)
and g
:
X
→
X
be two mappings
.
Assume that there exist some
φ
∈ Φ
and
such that
for all
x
,
y
,
u
,
v
∈
X
.
Furthermore assume that
F
(
X
×
X
) ⊆
g
(
X
)
and
g
(
X
)
is a complete subset of X
.
Then F and g have a coupled coincidence point
.
Moreover
,
F and g have a common coupled fixed point
,
if one of the following conditions holds
:
-
(a)F and g are w−compatible. limn→∞gnx=u andlimn→∞gny=v for some(x,y) ∈C(F,g)and for someu,v∈X and g is continuous at u and v.
-
(b)g is F−weakly commuting for some(x,y) ∈C(F,g)and gx and gy are fixed points of g, that is,g2x=gxandg2y=gy.
-
(c)g is continuous at x and y. limn→∞gnu=x andlimn→∞gnv=y for some(x,y) ∈C(F,g)and for someu,v∈X.
-
(d)g(C(F,g))is a singleton subset ofC(F,g).
If we put
g
=
I
(the identity mapping) in the Corollary 2.4, we get the following result:
Corollary 2.5.
Let
(
X
,
d
)
be a complete metric space
,
F
:
X
×
X
→
K
(
X
)
be a mapping
.
Assume that there exist some
φ
∈ Φ
and
such that
for all x
,
y
,
u
,
v
∈
X
.
Then F has a coupled fixed point
.
If we put
φ
(
t
) = 2
t
for all
t
≥ 0 in Theorem 2.1, then we get the following result:
Corollary 2.6.
Let
(
X
,
d
)
be a metric space
,
F
:
X
×
X
→
K
(
X
)
and g
:
X
→
X
be two mappings
.
Assume that there exists some
Ψ
∈ Ψ
such that
for all
x
,
y
,
u
,
v
∈
X
.
Furthermore assume that
F
(
X
×
X
) ⊆
g
(
X
)
and
g
(
X
)
is a complete subset of X
.
Then F and g have a coupled coincidence point. Moreover
,
F and g have a common coupled fixed point, if one of the following conditions holds
:
-
(a)F and g are w−compatible. limn→∞gnx=u andlimn→∞gny=v for some(x,y) ∈C(F,g)and for someu,v∈X and g is continuous at u and v.
-
(b)g is F−weakly commuting for some(x,y) ∈C(F,g)and gx and gy are fixed points of g,that is,g2x=gx andg2y=gy.
-
(c)g is continuous at x and y. limn→∞gnu=x andlimn→∞gnv=y for some(x,y) ∈C(F,g)and for someu,v∈X.
-
(d)g(C(F,g))is a singleton subset ofC(F,g).
If we put
g
=
I
(the identity mapping) in the Corollary 2.6, we get the following result:
Corollary 2.7.
Let
(
X
,
d
)
be a complete metric space
,
F
:
X
×
X
→
K
(
X
)
be a mapping
.
Assume that there exists some
Ψ
∈ Ψ
such that
H
(
F
(
x
,
y
),
F
(
u
,
v
)) ≤
Ψ
(2 max {
d
(
x
,
u
),
d
(
y
,
v
)}) max {
d
(
x
,
u
),
d
(
y
,
v
)} ,
for all
x
,
y
,
u
,
v
∈
X
.
Then F has a coupled fixed point
.
If we put
Ψ
(
t
) =
k
where 0 <
k
< 1, for all
t
≥ 0 in Corollary 2.6, then we get the following result:
Corollary 2.8.
Let
(
X
,
d
)
be a metric space
.
Assume
F
:
X
×
X
→
K
(
X
)
and
g
:
X
→
X
be two mappings satisfying
for all
x
,
y
,
u
,
v
∈
X
,
where
0 <
k
< 1.
Furthermore assume that
F
(
X
×
X
) ⊆
g
(
X
)
and
g
(
X
)
is a complete subset of
X
.
Then F and g have a coupled coincidence point
.
Moreover
,
F and g have a common coupled fixed point, if one of the following conditions holds
:
-
(a)F and g are w−compatible. limn→∞gnx=u andlimn→∞gny=v for some(x,y) ∈C(F,g)and for someu,v∈Xand g is continuous at u and v.
-
(b)g is F−weakly commuting for some(x,y) ∈C(F,g)and gx and gy are fixed points of g,that is,g2x=gx andg2y=gy.
-
(c)g is continuous at x and y. limn→∞gnu=x andlimn→∞gnv=y for some(x,y) ∈C(F,g)and for someu,v∈X.
-
(d)g(C(F,g))is a singleton subset ofC(F,g).
If we put
g
=
I
(the identity mapping) in the Corollary 2.8, we get the following result:
Corollary 2.9.
Let
(
X
,
d
)
be a complete metric space
.
Assume
F
:
X
×
X
→
K
(
X
)
be a mapping satisfying
for all
x
,
y
,
u
,
v
∈
X
,
where
0 <
k
< 1.
Then F has a coupled fixed point
.
Abbas M.
,
Ali B.
,
Amini-Harandi A.
2012
Common fixed point theorem for hybrid pair of mappings in Hausdorff fuzzy metric spaces
Fixed Point Theory Appl
225 -
Abbas M.
,
Ciric L.
,
Damjanovic B.
,
Khan M.A.
Coupled coincidence point and common fixed point theorems for hybrid pair of mappings
Fixed Point Theory Appl
DOI : 10.1186/1687-1812-2012-4
Amini-Harandi A.
,
O’Regan D.
2010
Fixed point theorems for set-valued contraction type mappings in metric spaces
Fixed Point Theory Appl
Article ID 390183
7
Banach S.
1922
Sur les Operations dans les Ensembles Abstraits et leur. Applications aux Equations Integrales
Fund. Math.
3
133 -
181
Berinde V.
2012
Coupled fixed point theorems for φ−contractive mixed monotone mappings in partially ordered metric spaces
Nonlinear Anal
75
3218 -
3228
DOI : 10.1016/j.na.2011.12.021
Bhaskar T.G.
,
Lakshmikantham V.
2006
Fixed point theorems in partially ordered metric spaces and applications
Nonlinear Anal
65
(7)
1379 -
1393
DOI : 10.1016/j.na.2005.10.017
Choudhury B.S.
,
Kundu A.
2010
A coupled coincidence point results in partially ordered metric spaces for compatible mappings
Nonlinear Anal
73
2524 -
2531
DOI : 10.1016/j.na.2010.06.025
Ciric L.
,
Damjanovic B.
,
Jleli M.
,
Samet B.
2012
Coupled fixed point theorems for generalized Mizoguchi-Takahashi contractions with applications
Fixed Point Theory Appl
51 -
Deshpande B.
,
Handa A.
2015
Nonlinear mixed monotone-generalized contractions on partially ordered modified intuitionistic fuzzy metric spaces with application to integral equations
Afr. Mat.
26
(3-4)
317 -
343
DOI : 10.1007/s13370-013-0204-0
Deshpande B.
,
Handa A.
2014
Application of coupled fixed point technique in solving integral equations on modified intuitionistic fuzzy metric spaces
Adv. Fuzzy Syst.
Article ID 348069
Deshpande B.
,
Handa A.
Common coupled fixed point theorems for hybrid pair of mappings satisfying an implicit relation with application
Afr. Mat.
DOI : 10.1007/s13370-015-0326-7
Deshpande B.
,
Handa A.
2014
Common coupled fixed point theorems for two hybrid pairs of mappings under φ − ψ contraction
ISRN
Article ID 608725
Deshpande B.
,
Handa A.
2015
Common coupled fixed point for hybrid pair of mappings under generalized nonlinear contraction
East Asian Math. J.
31
(1)
77 -
89
DOI : 10.7858/eamj.2015.008
Deshpande B.
,
Handa A.
2015
Common coupled fixed point theorems for hybrid pair of mappings under some weaker conditions satisfying an implicit relation
Nonlinear Analysis Forum
20
79 -
93
Deshpande B.
,
Sharma S.
,
Handa A.
2013
Common coupled fixed point theorems for nonlinear contractive condition on intuitionistic fuzzy metric spaces with application to integral equations
J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math.
20
159 -
180
Ding H.S.
,
Li L.
,
Radenovic S.
2012
Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces
Fixed Point Theory Appl
96 -
Du W.S.
2010
Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi’s condition in quasi ordered metric spaces
Fixed Point Theory Appl
Article ID 876372
2010
9 -
Harjani J.
,
Lopez B.
,
Sadarangani K.
2011
Fixed point theorems for mixed monotone operators and applications to integral equations
Nonlinear Anal
74
1749 -
1760
DOI : 10.1016/j.na.2010.10.047
Lakshmikantham V.
,
Ciric L.
2009
Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces
Nonlinear Anal
70
(12)
4341 -
4349
DOI : 10.1016/j.na.2008.09.020
Long W.
,
Shukla S.
,
Radenovic S.
2013
Some coupled coincidence and common fixed point results for hybrid pair of mappings in 0-complete partial metric spaces
Fixed Point Theory Appl
145 -
Luong N.V.
,
Thuan N.X.
2011
Coupled fixed points in partially ordered metric spaces and application
Nonlinear Anal
74
983 -
992
DOI : 10.1016/j.na.2010.09.055
Jain M.
,
Tas K.
,
Kumar S.
,
Gupta N.
2012
Coupled common fixed point results involving a φ−ψ contractive condition for mixed g-monotone operators in partially ordered metric spaces
J. Inequal. Appl
285 -
Markin J.T.
1947
Continuous dependence of fixed point sets
Proc. Ame. Math. Soc.
38
545 -
547
Mizoguchi N.
,
Takahashi W.
1989
Fixed point theorems for multivalued mappings on complete metric spaces
J. Math. Anal. Appl.
141
177 -
188
DOI : 10.1016/0022-247X(89)90214-X
Samet B.
2010
Coupled fixed point theorems for generalized Meir-Keeler contraction in partially ordered metric spaces
Nonlinear Anal.
72
4508 -
4517
DOI : 10.1016/j.na.2010.02.026
Samet B.
,
Karapinar E.
,
Aydi H.
,
Rajic V. C.
2013
Discussion on some coupled fixed point theorems
Fixed Point Theory Appl
50 -
Singh N.
,
Jain R.
2012
Coupled coincidence and common fixed point theorems for set-valued and single-valued mappings in fuzzy metric space
Journal of Fuzzy Set Valued Analysis
Article ID jfsva-00129
Sintunavarat W.
,
Kumam P.
,
Cho Y. J.
2012
Coupled fixed point theorems for nonlinear contractions without mixed monotone property
Fixed Point Theory Appl
170 -
Suzuki T.
2008
Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s
J. Math. Anal. Appl.
340
(1)
752 -
755
DOI : 10.1016/j.jmaa.2007.08.022