Advanced
Production of γ-Aminobutyric Acid Using Immobilized Glutamate Decarboxylase from Lactobacillus plantarum
Production of γ-Aminobutyric Acid Using Immobilized Glutamate Decarboxylase from Lactobacillus plantarum
Microbiology and Biotechnology Letters. 2015. Sep, 43(3): 300-305
Copyright © 2015, The Korean Society for Microbiology and Biotechnology
  • Received : September 03, 2015
  • Accepted : September 06, 2015
  • Published : September 28, 2015
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
상재 이
한승 이
동우 이
leehicam@knu.ac.kr

Abstract
The glutamate decarboxylase gene ( gadB ) from Lactobacillus plantarum WCFS1 was cloned and expressed as an N-terminal hexa-histidine-tagged fusion protein in Escherichia coli BL21 (DE3) as the host strain. Purified glutamate decarboxylase (GAD) was immobilized onto porous silica beads by covalent coupling. The pH dependence of activity and stability of the immobilized GAD was significantly altered, when compared to those of the free enzyme. Immobilized GAD was stable in the range of pH 3.5 to 6.0. The resulting packed-bed reactor produced 41.7 g of γ-aminobutyric acid/l·h at 45℃.
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Acknowledgements
We thank Young-Ho Hong, Hana Kim, Yu-Ryang Pyun for technical assistance with enzyme immobilization and critical reading. This research was supported by Kyungpook National University Research Fund, 2012.
References
Albayrak N , Yang ST 2002 Immobilization of beta-galactosidase on fibrous matrix by polyethyleneimine for production of galacto-oligosaccharides from lactose Biotechnol. Prog. 18 240 - 251    DOI : 10.1021/bp010167b
Arica MY , Hasirci V , Alaeddinoglu NG 1995 Covalent immobilization of alpha-amylase onto pHEMA microspheres: preparation and application to fixed bed reactor Biomaterials. 16 761 - 768    DOI : 10.1016/0142-9612(95)99638-3
Barrett E , Ross RP , O’Toole PW , Fitzgerald GF , Stanton C 2012 gamma-Aminobutyric acid production by culturable bacteria from the human intestine J. Appl. Microbiol. 113 411 - 417    DOI : 10.1111/j.1365-2672.2012.05344.x
Blankenhorn D , Phillips J , Slonczewski JL 1999 Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis J. Bacteriol. 181 2209 - 2216
Busto MD 1998 An experiment illustrating the effect of immobilisation on enzyme properties Biochem. Edu. 26 304 - 308    DOI : 10.1016/S0307-4412(98)00168-X
De Biase D , Tramonti A , Bossa F , Visca P 1999 The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system Mol. Microbiol. 32 1198 - 1211    DOI : 10.1046/j.1365-2958.1999.01430.x
Di Cagno R , Mazzacane F , Rizzello CG , De Angelis M , Giuliani G , Meloni M 2010 Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications Appl. Microbiol. Biotechnol. 86 731 - 741    DOI : 10.1007/s00253-009-2370-4
Foster AC , Kemp JA 2006 Glutamate- and GABA-based CNS therapeutics Curr. Opin. Pharmacol. 6 7 - 17    DOI : 10.1016/j.coph.2005.11.005
Jeng KC , Chen CS , Fang YP , Hou RC , Chen YS 2007 Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh tea J. Agric. Food Chem. 55 8787 - 8792    DOI : 10.1021/jf071629p
Kakee A , Takanaga H , Terasaki T , Naito M , Tsuruo T , Sugiyama Y 2001 Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier J. Neurochem. 79 110 - 118
Lee S , Ahn J , Kim YG , Jung JK , Lee H , Lee EG 2013 Gamma-aminobutyric Acid production using immobilized glutamate decarboxylase followed by downstream processing with cation exchange chromatography Int. J. Mol. Sci. 14 1728 - 1739    DOI : 10.3390/ijms14011728
Lin Q 2013 Submerged fermentation of Lactobacillus rhamnosus YS9 for gamma-aminobutyric acid (GABA) production Braz. J. Microbiol 44 183 - 187    DOI : 10.1590/S1517-83822013000100028
Meldrum BS , Rogawski MA 2007 Molecular targets for antiepileptic drug development Neurotherapeutics. 4 18 - 61    DOI : 10.1016/j.nurt.2006.11.010
Nomura M , Nakajima I , Fujita Y , Kobayashi M , Kimoto H , Suzuki I , Aso H 1999 Lactococcus lactis contains only one glutamate decarboxylase gene Microbiology. 145 1375 - 1380    DOI : 10.1099/13500872-145-6-1375
Ortega N , Busto MD , Perez-Mateos M 1998 Stabilisation of beta-glucosidase entrapped in alginate and polyacrylamide gels towards thermal and proteolytic deactivation J. Chem. Technol. Biotechnol. 73 7 - 12    DOI : 10.1002/(SICI)1097-4660(199809)73:1<7::AID-JCTB921>3.0.CO;2-#
Rehm H , Reed G , Kennedy JF 1987 Biotechnology Enzyme Technology. VCH Weinheim
Rizzello CG , Cassone A , Di Cagno R , Gobbetti M 2008 Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria J. Agric. Food Chem. 56 6936 - 6943    DOI : 10.1021/jf800512u
Shin SM , Kim H , Joo Y , Lee SJ , Lee YJ , Lee SJ 2014 Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity J. Agric. Food Chem. 62 12186 - 12193    DOI : 10.1021/jf504656h
Weetall HH 1976 Covalent coupling methods for inorganic support materials Methods Enzymol. 44 134 - 148
Yao W , Wu X , Zhu J , Sun B , Miller C 2013 In vitro enzymatic conversion of gamma-aminobutyric acid immobilization of glutamate decarboxylase with bacterial cellulose membrane (BCM) and non-linear model establishment Enzyme Microb. Technol. 52 258 - 264    DOI : 10.1016/j.enzmictec.2013.01.008