There is increasing interest in the relationships between marine bacteria and red tide organisms. Some bacteria are known to kill red tide organisms, and may be responsible for accelerating the termination of red tides. Thus, certain algicidal bacteria have been proposed for the control of red tides. Meanwhile, many red tide organisms are known to feed on marine bacteria. The roles of marine bacteria and red tide organisms are therefore reversible. In Korean waters, the killing of red tide organisms by algicidal bacteria, and also the feeding of red tide organisms on marine bacteria have been extensively investigated. The findings of such studies may influence the conventional view of red tide dynamics, and also planktonic food webs. Here, we review the species and concentrations of algicidal bacteria that kill red tide organisms in Korean waters, as well as the ingestion rate and grazing impact of red tide organisms on marine bacteria. Furthermore, we offer an insight into the ecological roles of these 2 components in marine planktonic food webs.
INTRODUCTION
Red tides—discoloration of the surface of the sea due to the blooms of plankton—constitute one of the most important environmental issues globally. By altering the balance of food webs and causing large-scale mortalities of fish and shellfish, red tides often lead to considerable losses in the aquaculture and tourist industries (Whyte et al. 2001, Curtiss et al. 2008, Richlen et al. 2010, Jeong and Kang 2013, Park et al. 2013
c
). Thus, many countries are endeavoring to understand the process of red tides, and thereby predict and control their outbreaks (e.g., Mackey et al. 1996). Red tide dynamics are known to be influenced by diverse physical, chemical, and biological properties (Cole 1982, Doucette et al. 1998, Imai et al. 2001, Han et al. 2010, Tang and Gobler 2010, Jeong et al. 2013
a
, 2013
b
, Kang et al. 2013, Kim et al. 2013
a
, 2013
b
, Lee et al. 2013, Park et al. 2013
b
, Yih et al. 2013, Yoo et al. 2013).
Several investigations have revealed that certain bacteria kill red tide organisms, thereby playing an important role in the decline of red tides (Imai et al. 1993, 2001, Doucette et al. 1998, Salomon and Imai 2006). Thus, the killing of red tide organisms by algicidal bacteria has been extensively studied (Fukami et al. 1992, Mayali and Doucette 2002). Meanwhile, in the last 2 decades, many red tide organisms, including phototrophic dinoflagellates and raphidophytes, have been shown to feed on bacteria (Nygaard and Tobiesen 1993, Seong et al. 2006, Jeong et al. 2010
a
, 2010
b
, 2010
c
, Jeong 2011, Park et al. 2013
a
). The predator-prey relationships of red tide organisms and bacteria (2 major components of marine environments) are therefore reversible.
In Korea, red tides have led to considerable losses in the aquaculture industries (Park et al. 2013
c
). Thus, methods to control the outbreak and persistence of red tides, and thereby reduce their economic impacts, are urgently required. Several potential control methods have been suggested or implemented (Jeong et al. 2002, 2003
a
, 2008, Sengco and Anderson 2004, Park et al. 2013
c
), including the use of mass-cultured algicidal bacteria.
Here, we review the species and concentrations of algicidal bacteria that kill red tide organisms in Korean waters, as well as the ingestion rates and grazing impact of red tide organisms on bacteria. Furthermore, we examine the ecological significance of the interactions between these 2 components of marine environments.
BACTERIA AS KILLERS OF RED TIDE ORGANISMS IN KOREAN WATERS
- Species of algicidal bacteria isolated from Korean waters
Many bacteria are known to kill red tide organisms in Korean waters (
Table 1
). In particular, algicidal bacteria that kill the mixotrophic dinoflagellate
Cochlodinium polykrikoides
, which causes considerable great losses in the Korean aquaculture industry, have been extensively studied (Jeong et al. 2004, 2008, Park et al. 2013
c
). Such
Algicidal bacteria and target red tide organisms isolated from the Korean waters, and lowest concentrations of algicidal bacteria required to kill red tide organisms (LCBK)
Algicidal bacteria and target red tide organisms isolated from the Korean waters, and lowest concentrations of algicidal bacteria required to kill red tide organisms (LCBK)
bacteria include
Alteromonas
sp. strain A14,
Alteromonas
sp.,
Bacillus
sp. SY-1,
Hahella chejuensis
KCTC 2396,
Micrococcus
sp. LG-5,
Micrococcus luteus
SY-13,
Nautella
sp.,
Pseudomonas
sp. LG-2,
Pseudoalteromonas
sp.,
Sagittula
sp.,
Thalassobius
sp., and
Vibrio parahaemolyticus
(
Table 1
). The algicidal components of these bacteria were revealed to be Bacillamide and Prodigiosin (Jeong et al. 2003
b
, 2005). In addition, algicidal activity usually peaked at 15 hours and was subsequently maintained (Park et al. 1998, 1999, Jeong et al. 2003
b
, Oh et al. 2011).
The bacterium
Pseudoalteromonas haloplanktis
was shown to lyse the cell wall of another mixotrophic dinoflagellate,
Prorocentrum minimum
; the algicidal activity was revealed to be caused by the release of β-glucosidase (Kim et al. 2009
a
). Furthermore,
Pseudomonas
sp. LG-2 was shown to kill the mixotrophic dinoflagellate
Prorocentrum micans
(
Table 1
). In addition,
Pseudomonas fluorescens
and
Kordia algicida
OT-1 are known to kill the raphidophyte,
Heterosigma akashiwo
, while
Bacillus
sp. is known to kill another raphidophyte,
Chattonella marina
.
Bacillus
sp. was also shown to kill the mixotrophic dinoflagellates
Akashiwo sanguinea
and
Scrippsiella trochoidea
, and the raphidophytes
Fibrocapsa japonica
and
H. akashiwo
(
Table 1
).
Pseudomonas
sp. LG-2 killed
Prorocentrum micans
, but did not kill
Alexandrium tamarense
,
Akashiwo sanguinea
,
Cochlodinium polykrikoides
(Lee and Park 1998). In addition,
Pseudoalteromonas haloplanktis
killed
Prorocentrum minimum
and
P. donghaiense
, but did not kill
A. sanguinea
,
A. tamarense
,
C. polykrikoides
,
Gymnodinium catenatum
, and
Heterosigma akashiwo
(Kim et al. 2009
a
). However,
Micrococcus
sp. LG-5 killed diverse algae such as
C. polykrikoides
,
H. akashiwo
,
P. micans
, and the euglenophyte
Eutreptiella gymnastica
(Jeong et al. 2000
a
, 2000
b
). Thus, some algicidal bacteria kill specific species of red tide organisms, while others kill a diverse range of red tide organisms.
On the basis the results of laboratory and field experiments, methods to control red tides using mass-cultured algicidal bacteria have been developed (e.g., Kim et al. 2009
a
). The efficiency of these methods requires the determination of the minimum concentrations of algicidal bacteria. In addition, the efficacy in mesocosms and natural environments must be evaluated.
- Lowest concentrations of algicidal bacteria required to kill red tide organisms isolated from Korean waters
The lowest concentrations of algicidal bacteria required to kill target red tide organisms (LCBK) differ depending on the species of bacteria and red tide organisms (
Table 1
). For example, the LCBK of
Micrococcus luteus
SY-13 on
C. polykrikoides
was 3.7 × 10
3
cells mL
-1
, whereas those of
Vibrio parahaemolyticus
,
Micrococcus
sp. LG-1, and
Alteromonas
sp. A14 ranged from 0.9 × 10
6
to 1.3 × 10
6
cells mL
-1
(
Table 1
). In addition, the LCBKs of
Pseudomonas
sp. LG-2 and
Micrococcus
sp. LG-5 on
P. micans
were 1.3 × 10
6
and 1.0 × 10
6
cells mL
-1
, respectively. Thus, before
Ingestion rates and carbon acquisition of mixotrophic and heterotrophic predators of marine bacteriaESD, equivalent spherical diameter; CPP, carbon content per predator cell used in each experiment (pg C cell-1); CPB, carbon content per bacterial cell used in each experiment (pg C cell-1); Imax, maximum ingestion rate (cells predator-1h-1); AC, acquired amount of carbon by a predator from bacteria per day (pg C predator-1d-1); % body carbon, percent of acquired carbon to predator’s body carbon (%); MD, mixotrophic dinoflagellate; RA, raphidophyte.
Ingestion rates and carbon acquisition of mixotrophic and heterotrophic predators of marine bacteria ESD, equivalent spherical diameter; CPP, carbon content per predator cell used in each experiment (pg C cell-1); CPB, carbon content per bacterial cell used in each experiment (pg C cell-1); Imax, maximum ingestion rate (cells predator-1 h-1); AC, acquired amount of carbon by a predator from bacteria per day (pg C predator-1 d-1); % body carbon, percent of acquired carbon to predator’s body carbon (%); MD, mixotrophic dinoflagellate; RA, raphidophyte.
using the control methods in natural environments, the LCBK must be determined.
- Mesocosms testing of algicidal bacteria for killing red tide organisms in Korean waters
The use of algicidal bacteria to kill red tide organisms has frequently been investigated by means of field mesocosms (Kim et al. 2009
a
). For example, in mesocosms containing
P. minimum
red tide water,
P. haloplanktis
AFMB-08041 was found to reduce the concentration of
P. minimum
from 1.5 × 10
4
to 2.3 × 10
3
cells mL
-1
over 5 days (Kim et al. 2009
a
). Similarly, the algicidal bacterium
Micrococcus
sp. LG-1 (when applied at a concentration of 10
4
to 10
5
cells mL
-1
) reduced the concentration of
C. polykrikoides
from 4.8 × 10
3
to 2.0 × 10
2
cells mL
-1
in Masan Bay (Park et al. 1998). However, before applying the method in large-scale field studies, it is important to investigate possible secondary effects on non-target organisms.
BACTERIA AS PREY FOR RED TIDE ORGANISMS IN KOREAN WATERS
- Type of predator
Mixotrophic red tide dinoflagellates.
Many mixotrophic red tide dinoflagellates isolated from Korean waters are known to feed on bacteria (
Table 2
). For example,
Amphidinium carterae
,
Alexandrium catenella
,
A. tamarense
,
Ingestion rates (IR; cells alga-1 h-1) of red tide dinoflagellate (A) and raphidophyte (B) on bacteria as a function of the initial prey concentration. IR values and regression curves were obtained from Seong et al. (2006). Pm, Prorocentrum minimum; Cp, Cochlodinium polykrikoides; Hr, Heterocapsa rotundata; Ht, Heterocapsa triquetra; Co, Chattonella ovate; Ha, Heterosigma akashiwo. Equations: IR = 21.9 [x/(23.9 × 106+ x)], r2 = 0.668 for Pm; IR = 17.4 [x/(26.3 × 106 + x)], r2 = 0.864 for Cp; IR = 6.0 [x/(3.2 × 106 + x)], r2 = 0.743 for Ht; IR = 11.2 [x/(9.4 × 106 + x)], r2 = 0.709 for Hr; IR = 24.5 [x/(7.2 × 106 + x)], r2 = 0.703 for Co; IR = 11.7 [x/(4.3 × 106 + x)], r2 = 0.771 for Ha.
Akashiwo sanguinea
,
Cochlodinium polykrikoides
,
Gonyaulax polygramma
,
Gymnodinium aureolum
,
G. catenatum
,
G. impudicum
,
Heterocapsa rotundata
,
H. triquetra
,
Lingulodinium polyedrum
,
Prorocentrum donghaiense
,
P. micans
,
P. minimum
,
P. triestinum
, and
Scrippsiella trochoidea
are able to feed on heterotrophic bacteria (Seong et al. 2006, Jeong et al. 2010
b
). Recently, the zooxanthellae
Symbiodinium
spp., isolated from Korean waters, were also shown to feed on heterotrophic and autotrophic bacteria (Jeong et al. 2012). Thus, feeding of mixotrophic dinoflagellates on bacteria is common, regardless of genera, size, shape, presence of theca, etc. However, feeding by other mixotrophic red tide dinoflagellates on heterotrophic bacteria has not yet been investigated.
Amount of carbon acquired by mixotrophic (circles) and heterotrophic (squares) dinoflagellates as a function of algal predator size. Body carbon (%), percent of acquired carbon from bacteria to predator’s body carbon; ESD, equivalent spherical diameter; Pm, Prorocentrum minimum; Cp, Cochlodinium polykrikoides; Ht, Heterocapsa triquetra; Hr, Heterocapsa rotundata; Ha, Heterosigma akashiwo; Co, Chattonella ovata; Om, Oxyrrhis marina; Pp, Pfiesteria piscicida; Pb, Protoperidinium bipes; Gg, Gyrodinium cf. guttula. Data were obtained from Seong et al. (2006) and Jeong et al. (2008).
Ingestion and clearance rates measured in the laboratory.
Seong et al. (2006) reported that an increase in the initial bacterial prey concentration to ca. 5 × 10
6
to 10 × 10
6
cells mL
-1
led to a rapid increase in the ingestion rates by
H. rotundata
,
H. triquetra
,
P. minimum
, and
C. polykrikoides
. At higher prey concentrations, the ingestion rates increased slowly or reached saturation (
Fig. 1
). The maximum ingestion rates ranged from 6.0 to 21.9 cells alga
-1
h
-1
(
Table 2
,
Fig. 1
). Seong et al. (2006) further reported that the maximum bacterial ingestion rates of 8 red tide algae were not significantly affected by algal size, indicating that the ingestion rates of bacteria may not be determined by the size of red tide algae.
The maximum bacterial clearance rates by red tide algae were 1.0-2.3 nL alga
-1
h
-1
for
H. rotundata
,
H. triquetra
,
P. minimum
, and
C. polykrikoides
(
Table 2
). These rates are comparable with those of heterotrophic nanoflagellates (HNF, 1.0-4.0 nL alga
-1
h
-1
) (Eccleston-Parry and Leadbeater 1994, Zubkov and Sleigh 1995), but lower than those for ciliates (50-560 nL alga
-1
h
-1
) (Alonso et al. 2000).
Carbon acquisition from bacterial prey.
Seong et al. (2006) reported that the smallest red tide alga,
Heterocapsa rotundata
, was able to acquire 76% of its daily body carbon intake from bacteria. The corresponding daily carbon acquisition by
P. minimum
was 27.1%. These data indicate that bacteria may support positive growth of small red tide dinoflagellates, with the formation of red tide patches. Carbon acquisition by
H. rotundata
from bacterial prey exceeds that of the heterotrophic dinoflagellate
Oxyrrhis marina
, which has the highest value among heterotrophic dinoflagellates (
Fig. 2
). Seong et al. (2006) further reported that bacteria may not support the growth of the large red tide algae
Heterocapsa triquetra
and
Cochlodinium polykrikoides
, which can obtain <4% of their daily body carbon intake from bacteria. Calculations of carbon acquisition and maximum volume-specific clearance rates by
H. triquetra
and
C. polykrikoides
indicated that bacteria are not suitable as the sole growth source for these large dinoflagellates, but may be considered as supplementary prey.
Ingestion rates measured in the field.
Seong et al. (2006) reported that the mean ingestion rates of natural bacterial populations by mixotrophic red tide dinoflagellates in Korean coastal waters ranged from 1.2 to 20.6 bacteria alga
-1
h
-1
for
H. rotundata
,
H. triquetra
,
P. minimum
,
P. triestinum
, and
C. polykrikoides
. In comparison, those of HNFs and ciliates ranged from 0.7 to 39.4 bacteria HNF
-1
h
-1
and from 15 to 713 bacteria ciliate
-1
h
-1
, respectively. In contrast, the grazing coefficient of natural bacterial populations by all mixotrophic red tide dinoflagellates (0.012-1.146 d
-1
) was significantly greater than those by all HNFs (0.008-0.196 d
-1
) or all ciliates (0.000-0.716 d
-1
).
H. rotundata
/
H. triquetra
,
P. minimum
/
P. triestinum
, and
C. polykrikoides
were the most effective or the second most effective protistan predators of marine bacteria among the dominant red tide dinoflagellates, HNFs, and ciliate predators (Seong et al. 2006).
- Mixotrophic red tide raphidophytes
The mixotrophic red tide raphidophytes
Chattonella
,
Heterosigma
, and
Fibrocapsa
isolated from Korean waters are known to feed on heterotrophic bacteria (
Table 2
).
The maximum ingestion rates of
Heterosigma akashiwo
and
Chattonella ovata
on heterotrophic bacteria in the predators’ cultures are 11.7 and 24.5 cells alga
-1
h
-1
, respectively (
Table 2
). Seong et al. (2006) reported that
H. akashiwo
was able to acquire 12.5% of its daily body carbon from bacteria, while
C. ovata
can obtain <4% of their daily body carbon. These data indicate that bacteria may support positive growth of
H. akashiwo
, but bacteria may be considered as supplementary prey for
C. ovata
.
Seong et al. (2006) reported that the ingestion rate of
Heterosigma akashiwo
on natural bacteria in Korean waters ranged from 2.7 to 9.0 cells alga
-1
h
-1
and the grazing coefficient of natural bacterial populations by
H. akashiwo
ranged from 0.020 to 0.867 d
-1
. Thus,
H. akashiwo
may sometimes have considerable grazing impact on natural bacterial populations.
- Heterotrophic dinoflagellates
Jeong et al. (2006) and Yoo et al. (2013) reported that the abundance of the heterotrophic dinoflagellate
Pfiesteria piscicida
and morphologically similar heterotrophic dinoflagellates (so called
Pfiesteria
-like dinoflagellates) exceeded 10,000 cells mL
-1
(i.e., >1,000 ng C mL
-1
) and caused red tides in Korean waters.
P. piscicida
isolated from Korean waters is known to feed on bacteria (Jeong et al. 2008). The heterotrophic dinoflagellates
Oxyrrhis marina
and
Gyrodinium
spp., isolated from Korean waters, were also able to feed on bacteria (Jeong et al. 2008). Jeong et al. (2008) further reported that the maximum bacterial ingestion rates of heterotrophic dinoflagellates were 71.3 cells dinoflagellate
-1
h
-1
for
O. marina
, 23.2 cells dinoflagellate
-1
h
-1
for
G
. cf.
guttula
, and 13.7 cells dinoflagellate
-1
h
-1
for
P. piscicida
. These rates are comparable with those for mixotrophic dinoflagellate (1.2-20.6 cells alga
-1
h
-1
), raphidophytes (11.7-24.5 cells alga
-1
h
-1
), HNFs (4-10 cells alga
-1
h
-1
) (Eccleston-Parry and Leadbeater 1994, Zubkov and Sleigh 1995), and ciliates (150-380 cells ciliate
-1
h
-1
) (Alonso et al. 2000). Therefore, some heterotrophic dinoflagellates may be important predators on marine bacteria (Jeong et al. 2008).
RECIPROCAL PREDATION BETWEEN BACTERIA AND RED TIDE ORGANISMS
The pathogenic bacterium
Vibrio parahaemolyticus
is known to be a killer of dinoflagellates, and also to act as prey for red tide dinoflagellates (Seong and Jeong 2011). At
V. parahaemolyticus
concentrations of >1.5 × 10
6
cells mL
-1
,
C. polykrikoides
is a victim. At
V. parahaemolyticus
concentration of 1.4 × 10
7
cells mL
-1
,
G. impudicum
is also a victim. At
V. parahaemolyticus
concentrations of <1.5 × 10
6
cells mL
-1
,
A. carterae
,
P. minimum
, and
P. micans
are mainly grazers on
V. parahaemolyticus
, whereas at the higher
V. parahaemolyticus
concentration, they may also be victims (
Fig. 3
). According to these data, Seong and Jeong (2011) proposed that the roles of red tide dinoflagellates and bacteria are reversible, depending on the bacterial concentration.
P. micans
is able to acquire 9.2% of its daily body carbon intake (91.8 pg) from
V. parahaemolyticus
. Thus,
V. parahaemolyticus
may stimulate or partially support the growth of
P. micans
.
On the basis of data derived from studies of bacterial
Growth rate of red tide organism as a function of the abundance of Vibrio parahaemolyticus. (A) Prorocentrum micans (Pmic) and Amphidinium carterae (Ac). (B) Cochlodinium polykrikoides (Cp), Gymnodinium impudicum (Gi), and Prorocentrum minimum (Pm). Figure modified from Seong and Jeong (2011).
feeding by red tide organisms, and killing of red tide organisms by algicidal bacteria, a hub of each red tide organism can be drawn (Jeong et al. 2010
c
). Thus,
C. polykrikoides
can feed on natural bacterial populations and
V. parahaemolyticus
, but is killed by
Bacillus
sp.,
Hahella chejuensis
, and
Alteromonas
sp. (
Table 1
). Similarly,
H. akashiwo
can feed on natural bacterial populations, but is killed by
Pseudomonas fluorescens
,
Micrococcus
sp. LG5, and
Kordia algicida
OT-1. Furthermore,
P. micans
can feed on natural bacterial populations and
V. parahaemolyticus
, but is killed by
Pseudomonas
sp. LG2 and
Micrococcus
sp. LG5. Further studies are required to isolate and identify bacteria during red tides, and to determine whether the bacteria are victims or killers.
ECOLOGICAL SIGNIFICANCE OF THE INTERACTIONS BETWEEN BACTERIA AND RED TIDE ORGANISMS
Taken together, the results of previous studies on the interactions between heterotrophic bacteria and red tide organisms indicate the following roles of each marine component in the dynamics of the other: 1) bacteria can be killers of red tide organisms; 2) bacteria can clear the body of senescent red tide organisms, by accelerating the decline of a red tide and decomposing the red tide organisms; 3) during some red tides, dominant red tide organisms may be the most effective predators of marine bacteria among protistan predators; and 4) bacteria may be too small to be ingested by filter-feeding copepods, whereas many red tide organisms are ingested by the copepods. Red tide organisms may therefore represent a link between bacteria and some zooplankters, which are unable directly to ingest bacteria.
Thus, bacteria may play diverse roles in red tide dynamics, and may even be critical factors affecting the abundance of red tide organisms in Korean waters.
CONCLUSION
Marine heterotrophic bacteria and red tide organisms can act as predators and / or prey in Korean waters. Furthermore, their roles are reversible at any time. Thus, these 2 components may co-exist by cycling materials between each other in marine ecosystems. Several methods for controlling red tides using mass-cultured algicidal bacteria have been developed. However, to evaluate the efficiency of these methods in natural environments, intensive field testing is required.
Acknowledgements
We thank Dr. Yeong Du Yoo and Nam Seon Kang for technical supports. This work was supported by the National Research Foundation of Korea Grant funded by the Korea Government/MSICTFP (NRF-C1ABA001-2010-0020702), Mid-career Researcher Program (2012-R1A2A2A01-010987), Ecological Disturbance Program of KIMST, Long-term change of structure and function in marine ecosystems of Korea program of KIMST/MOF award to HJJ.
View Fulltext
Alonso M. C.
,
Rodriguez V.
,
Rodriguez J.
,
Borrego J. J.
2000
Role of ciliates, flagellates and bacteriophages on the mortality of marine bacteria and on dissolved-DNAconcentration in laboratory experimental systems.
J. Exp. Mar. Biol. Ecol.
244
239 -
252
DOI : 10.1016/S0022-0981(99)00143-4
Byun H. -G.
,
Jeong S. -Y.
,
Park Y. -T.
,
Lee W. -J.
,
Kim S. -K.
2002
Algicidal activity of substance purified frommarine bacteria metabolites against Cochlodiniumpolykrikoides.
J. Fish. Sci. Technol.
5
150 -
155
Curtiss C. C.
,
Langlois G. W.
,
Busse L. B.
,
Mazzillo F.
,
Silver M. W.
2008
The emergence of Cochlodinium along theCalifornia Coast (USA).
Harmful Algae
7
337 -
346
DOI : 10.1016/j.hal.2007.12.012
Doucette G. J.
,
Kodama M.
,
Franca S.
,
Gallacher S.
1998
Bacterial interactions with harmful algal bloom species:bloom ecology, toxigenesis, and cytology. In Anderson,D. A. Cembella, A. D. & Hallegraeff, G. M. (Eds.) Physiological Ecology of Harmful Algal Blooms. Vol. 41.
Springer-Verlag
Heidelberg
619 -
648
Eccleston-Parry J. D.
,
Leadbeater B. S. C.
1994
A comparisonof the growth kinetics of six marine heterotrophicnanoflagellates fed with one bacterial species.
Mar. Ecol. Prog. Ser.
105
167 -
177
DOI : 10.3354/meps105167
Fukami K.
,
Yuzawa A.
,
Nishijima T.
,
Hata Y.
1992
Isolationand properties of a bacterium inhibiting the growth ofGymnodinium nagasakiense.
Nippon Suisan Gakkaishi
58
1073 -
1077
DOI : 10.2331/suisan.58.1073
Han H. -K.
,
Kim Y. -M.
,
Lim S. -J.
,
Hong S. -S.
,
Jung S. -G.
,
Cho H.
,
Lee W.
,
Jin E.
2010
Enhanced efficiency ofTD53, a novel algicidal agent, against the harmful algaevia the liposomal delivery system.
Int. J. Pharm.
405
137 -
141
DOI : 10.1016/j.ijpharm.2010.12.008
Imai I.
,
Ishida Y.
,
Hata Y.
1993
Killing of marine phytoplankton by a gliding bacterium Cytophaga sp. isolated from the coastal sea of Japan.
Mar. Biol.
116
527 -
532
DOI : 10.1007/BF00355470
Imai I.
,
Sunahara T.
,
Nishikawa T.
,
Hori Y.
,
Kondo R.
,
Hiroishi S.
2001
Fluctuation of the red tide flagellatesChattonella spp. (Raphidophyceae) and the algicidalbacterium Cytophaga sp., in the Seto Inland Sea, Japan.
Mar. Biol.
138
1043 -
1049
DOI : 10.1007/s002270000513
Jeong H. J.
,
Ha J. H.
,
Park J. Y.
,
Kim J. H.
,
Kang N. S.
,
Kim S.
,
Kim J. S.
,
Yoo Y. D.
,
Yih W. H.
2006
Distribution of theheterotrophic dinoflagellate Pfieteria piscicida in Koreanwaters and its consumption of mixotrophic dinoflagellates,raphidophytes, and fish blood cells.
Aquat. Microb. Ecol.
44
263 -
278
DOI : 10.3354/ame044263
Jeong H. J.
,
Kim H. R.
,
Kim K. I.
,
Kim K. Y.
,
Park K. H.
,
Kim S. T.
,
Yoo Y. D.
,
Song J. Y.
,
Kim J . S.
,
Seong K. A.
,
Yih W. H.
,
Pae S. J.
,
Lee C. H.
,
Huh M. D.
,
Lee S. H.
2002
NaOCl produced by electrolysis of natural seawater as apotential method to control marine red tide dinoflagellates.
Phycologia
41
643 -
656
DOI : 10.2216/i0031-8884-41-6-643.1
Jeong H. J.
,
Kim J. S.
,
Yoo Y. D.
,
Kim S. T.
,
Kim T. H.
,
Park M. G.
,
Lee C. H.
,
Seong K. A.
,
Kang N. S.
,
Shim J. H.
2003a
Feeding by the heterotrophic dinoflagellate Oxyrrhismarina on the red-tide raphidophyte Heterosigmaakashiwo: a potential biological method to control redtides using mass-cultured grazers.
J. Eukaryot. Microbiol.
50
274 -
282
DOI : 10.1111/j.1550-7408.2003.tb00134.x
Jeong H. J.
,
Seong K. A.
,
Kang N. S.
,
Yoo Y. D.
,
Nam S. W.
,
Park J. Y.
,
Shin W. G.
,
Glibert P. M.
,
Johns D.
2010a
Feeding by raphidophytes on the cyanobacterium Synechococcussp.
Aquat. Microb. Ecol.
58
181 -
195
DOI : 10.3354/ame01354
Jeong H. J.
,
Seong K. A.
,
Yoo Y. D.
,
Kim T. H.
,
Kang N. S.
,
Kim S.
,
Park J. Y.
,
Kim J. S.
,
Kim G. H.
,
Song J. Y.
2008
Feeding and grazing impact by small marine heterotrophicdinoflagellates on heterotrophic bacteria.
J. Eukaryot. Microbiol.
55
271 -
288
DOI : 10.1111/j.1550-7408.2008.00336.x
Jeong H. J.
,
Yoo Y. D.
,
Kang N. S.
,
Lim A. S.
,
Seong K. A.
,
Lee S. Y.
,
Lee M. J.
,
Lee K. H.
,
Kim H. S.
,
Shin W.
,
Nam S. W.
,
Yih W.
,
Lee K.
2012
Heterotrophic feeding as a newlyidentified survival strategy of the dinoflagellate Symbiodinium.
Proc. Natl. Acad. Sci. U. S. A.
109
12604 -
12609
DOI : 10.1073/pnas.1204302109
Jeong H. J.
,
Yoo Y. D.
,
Kang N. S.
,
Rho J. R.
,
Seong K. A.
,
Park J. W.
,
Nam G. S.
,
Yih W.
2010b
Ecology of Gymnodiniumaureolum. I. Feeding in western Korean waters.
Aquat. Microb. Ecol.
59
239 -
255
DOI : 10.3354/ame01394
Jeong H. J.
,
Yoo Y. D.
,
Kim J. S.
,
Kim T. H.
,
Kim J. H.
,
Kang N. S.
,
Yih W.
2004
Mixotrophy in the phototrophicharmful alga Cochlodinium polykrikoides (Dinophycean):prey species, the effects of prey concentration, andgrazing impact.
J. Eukaryot. Microbiol.
51
563 -
569
DOI : 10.1111/j.1550-7408.2004.tb00292.x
Jeong H. J.
,
Yoo Y. D.
,
Kim J. S.
,
Seong K. A.
,
Kang N. S.
,
Kim T. H.
2010c
Growth, feeding, and ecological rolesof the mixotrophic and heterotrophic dinoflagellates inmarine planktonic food webs.
Ocean Sci. J.
45
65 -
91
DOI : 10.1007/s12601-010-0007-2
Jeong H. J.
,
Yoo Y. D.
,
Lee K. H.
,
Kim T. H.
,
Seong K. A.
,
Kang N. S.
,
Lee K. H.
,
Lee S. Y.
,
Kim J. S.
,
Kim S.
,
Yih W. H.
2013a
Red tides in Masan Bay, Korea in 2004-2005:I. Daily variations in the abundances of red-tide organismsand environmental factors.
Harmful Algae
30S
S75 -
S88
DOI : 10.1016/j.hal.2013.10.008
Jeong H. J.
,
Yoo Y. D.
,
Lim A. S.
,
Kim T. W.
,
Lee K.
,
Kang C. K.
2013b
Raphidophyte red tides in Korean waters.
Harmful Algae
30S
S41 -
S52
DOI : 10.1016/j.hal.2013.10.005
Jeong H.
,
Yim J. H.
,
Lee C.
,
Choi S. -H.
,
Park Y. K.
,
Yoon S. H.
,
Hur C. -G.
,
Kang H. -Y.
,
Kim D.
,
Lee H. H.
,
Park K. H.
,
Park S. -H.
,
Park H. -S.
,
Lee H. K.
,
Oh T. K.
,
Kim J. F.
2005
Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent.
Nucleic. Acids Res.
33
7066 -
7073
DOI : 10.1093/nar/gki1016
Jeong S. -Y.
,
Ishida K.
,
Ito Y.
,
Okada S.
,
Murakami M.
2003b
Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides.
Tetrahedron Lett
44
8005 -
8007
DOI : 10.1016/j.tetlet.2003.08.115
Jeong S. Y.
,
Park Y. T.
,
Kim M. C.
,
Choi S. C.
,
Seong H. K.
,
Kim J. Y.
,
Kim T. U.
,
Lee W. J.
2000a
Isolation of marine bacteria killing red tide microalgae. IV. Characteristics of algicidal substances, produced from Micrococcus sp. LG-5 and the effects on marine organisms.
J. Korean Fish. Soc.
33
339 -
347
Jeong S. Y.
,
Park Y. T.
,
Lee W. J.
2000b
Isolation of marine bacteria killing red tide microalgae. III. Algicidal effects of marine bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides.
J. Korean Fish. Soc.
33
331 -
338
Kang N. S.
,
Lee K. H.
,
Jeong H. J.
,
Yoo Y. D.
,
Seong K. A.
,
Potvin É.
,
Hwang Y. J.
,
Yoon E. Y.
2013
Red tides in Shiwha Bay, western Korea: a huge dike and tidal power plant established in a semi-enclosed embayment system.
Harmful Algae
30S
S114 -
S130
DOI : 10.1016/j.hal.2013.10.011
Kim J. -D.
,
Kim B.
,
Lee C. -G.
2007
Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae).
Biol. Control
41
296 -
303
DOI : 10.1016/j.biocontrol.2007.02.010
Kim J. -D.
,
Kim J. -Y.
,
Park J. -K.
,
Lee C. -G.
2009a
Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041.
Mar. Biotechnol.
11
463 -
472
DOI : 10.1007/s10126-008-9167-9
Kim J. S.
,
Jeong H. J.
,
Yoo Y. D.
,
Kang N. S.
,
Kim S. K.
,
Song J. Y.
,
Lee M. J.
,
Kim S. T.
,
Kang J. H.
,
Seong K. A.
,
Yih W. H.
2013a
Red tides in Masan Bay, Korea in 2004-2005: III. Daily variation in the abundance of mesozooplankton and their grazing impact on red tide organisms.
Harmful Algae
30S
S102 -
S113
DOI : 10.1016/j.hal.2013.10.010
Kim M. -J.
,
Jeong S. -Y.
,
Lee S. -J.
2008
Isolation, identification, and algicidal activity of marine bacteria against Chochlodinium polykrikoides.
J. Appl. Phycol.
20
1069 -
1078
DOI : 10.1007/s10811-008-9312-x
Kim T. W.
,
Lee K.
,
Lee C. K.
,
Jeong H. D.
,
Suh Y. S.
,
Lim W. A.
,
Kim K. Y.
,
Jeong H. J.
2013b
Interannual nutrient dynamics in Korean coastal waters.
Harmful Algae
30S
S15 -
S27
DOI : 10.1016/j.hal.2013.10.003
Kim Y. S.
,
Lee D. -S.
,
Jeong S. -Y.
,
Lee W. J.
,
Lee M. -S.
2009b
Isolation and characterization of a marine algicidal bacterium against the harmful Raphidophyceae Chattonella marina.
J. Microbiol.
47
9 -
18
DOI : 10.1007/s12275-008-0141-z
Lee B. -K.
,
Katano T.
,
Kitamura S. -I.
,
Oh M. -J.
,
Han M. -S.
2008
Monitoring of algicidal bacterim, Alteromonas sp. strain A14 in its application to natural Cochlodinium polykrikoides blooming seawater using fluorescence in situ hybridization.
J. Microbiol.
46
274 -
282
DOI : 10.1007/s12275-007-0238-9
Lee C. K.
,
Park T. G.
,
Park Y. T.
,
Lim W. A.
2013
Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides.
Harmful Algae
30S
S3 -
S14
DOI : 10.1016/j.hal.2013.10.002
Lee S. -O.
,
Kato J.
,
Takiguchi N.
,
Kuroda A.
,
Ikeda T.
,
Mitsutani A.
,
Ohtake H.
2000
Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28.
Appl. Environ. Microbiol.
66
4334 -
4339
DOI : 10.1128/AEM.66.10.4334-4339.2000
Lee W. -J.
,
Park Y. -T.
1998
Isolation of marine bacteria killing red tide microalgae II. Isolation and algicidal properties of Pseudomonas sp. LG-2 possessing killing activity for dinoflagellate, Prorocentrum micans.
J. Korean Fish. Soc.
31
852 -
858
Mackey M. D.
,
Mackey D. J.
,
Higgins H. W.
,
Wright S. W.
1996
CHEMTAX: a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton.
Mar. Ecol. Prog. Ser.
144
265 -
283
DOI : 10.3354/meps144265
Mayali X.
,
Doucette G. J.
2002
Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae).
Harmful Algae
1
277 -
293
DOI : 10.1016/S1568-9883(02)00032-X
Nygaard K.
,
Tobiesen A.
1993
Bacterivory in algae: a survival strategy during nutrient limitation.
Limnol. Oceanogr.
38
273 -
279
DOI : 10.4319/lo.1993.38.2.0273
Oh J. -I.
,
Kim M. -J.
,
Lee J. -Y.
,
Ko I. -J.
,
Kim W.
,
Kim S. W.
2011
Isolation and characterization of algicidal bacteria from Cochlodinium polykrikoides culture.
Biotechnol. Bioprocess Eng.
16
1124 -
1133
DOI : 10.1007/s12257-011-0232-2
Park J.
,
Jeong H. J.
,
Yoo Y. D.
,
Yoon E. Y.
2013a
Mixotrophic dinoflagellate red tides in Korean waters: Distribution and ecophysiology.
Harmful Algae
30S
S28 -
S40
DOI : 10.1016/j.hal.2013.10.004
Park K. -Y.
,
Kim M. -R.
,
Kim S. -K.
1999
Isolation and characterization of algicidal bacteria KY1.
J. Korea Fish. Soc.
32
452 -
457
Park M. G.
,
Kim S.
,
Shin E. Y.
,
Yih W.
,
Coats D. W.
2013b
Parasitism of harmful dinoflagellates in Korean coastal waters.
Harmful Algae
30S
S62 -
S74
DOI : 10.1016/j.hal.2013.10.007
Park T. G.
,
Lim W. A.
,
Park Y. T.
,
Lee C. K.
,
Jeong H. J.
2013c
Economic impact, management and mitigation of red tide in Korea.
Harmful Algae
30S
S131 -
S143
DOI : 10.1016/j.hal.2013.10.012
Park Y. -T.
,
Park J. -B.
,
Chung S. -Y.
,
Song B. -C.
,
Lim W. -A.
,
Kim C. -H.
,
Lee W. -J.
1998
Isolation of marinebacteria killing red tide microalgae. I. Isolation and algicidalproperties of Micrococcus sp. LG-1 possessingkilling activity for harmful dinoflagellate, Cochlodiniumpolykrikoides.
J. Korean Fish. Soc.
31
767 -
773
Richlen M. L.
,
Morton S. L.
,
Jamali E. A.
,
Rajan A.
,
Anderson D. M.
2010
The catastrophic 2008-2009 red tide inthe Arabian gulf region, with observations on the identificationand phylogeny of the fish-killing dinoflagellateCochlodinium polykrikoides.
Harmful Algae
9
163 -
172
DOI : 10.1016/j.hal.2009.08.013
Salomon P. S.
,
Imai I.
2006
Pathogens of harmful microalgae.In Edna, G. & Turner, J. T. (Eds.) Ecology of Harmful Algae.
Springer-Verlag
Berlin
271 -
282
Seong K. A.
,
Jeong H. J.
2011
Interactions between thepathogenic bacterium Vibrio parahaemolyticus and redtidedinoflagellates.
Ocean Sci. J.
46
105 -
115
DOI : 10.1007/s12601-011-0010-2
Seong K. A.
,
Jeong H. J.
,
Kim S.
,
Kim G. H.
,
Kang J. H.
2006
Bacterivory by co-occurring red-tide algae, heterotrophicnanoflagellates, and ciliates on marine bacteria.
Mar. Ecol. Prog. Ser.
322
85 -
97
DOI : 10.3354/meps322085
Sohn J. H.
,
Lee J. -H.
,
Yi H.
,
Chun J.
,
Bae K. S.
,
Ahn T. Y.
,
Kim S. J.
2004
Kordia algicida gen. nov., an algicidal bacterium isolated from red tide.
Int. J. Syst. Evol. Microbiol.
54
675 -
680
DOI : 10.1099/ijs.0.02689-0
Tang Y. Z.
,
Gobler C. J.
2010
Allelopathic effects of Cochlodiniumpolykrikoides isolates and blooms from the estuariesof Long Island, New York, on co-occurring phytoplankton.
Mar. Ecol. Prog. Ser.
406
19 -
31
DOI : 10.3354/meps08537
Whyte J. N. C.
,
Haigh N.
,
Ginther N. G.
,
Keddy L. J.
2001
First record of blooms of Cochlodinium sp. (Gymnodiniales,Dinophyceae) causing mortality to aquaculturedsalmon on the west coast of Canada.
Phycologia
40
298 -
304
DOI : 10.2216/i0031-8884-40-3-298.1
Yih W.
,
Kim H. S.
,
Myung G.
,
Park J. W.
,
Yoo Y. D.
,
Jeong H. J.
2013
The red-tide ciliate Mesodinium rubrum in theKorean coastal waters.
Harmful Algae
30S
S53 -
S61
DOI : 10.1016/j.hal.2013.10.006
Yoo Y. D.
,
Jeong H. J.
,
Kim J. S.
,
Kim T. H.
,
Kim J. H.
,
Seong K. A.
,
Lee S. H.
,
Kang N. S.
,
Park J. W.
,
Park J.
,
Yoon E. Y.
,
Yih W. H.
2013
Red tides in Masan Bay, Korea in2004-2005: II. Daily variation in the abundance of heterotrophicprotists and their grazing impact on red-tideorganisms.
Harmful Algae
30S
S89 -
S101
DOI : 10.1016/j.hal.2013.10.009
Zubkov M. V.
,
Sleigh M. A.
1995
Bacterivory by starved marineheterotrophic nanoflagellates of two species whichfeed differently estimated by uptake of dual radioactivelabelled bacteria.
FEMS Microbiol. Ecol.
17
57 -
65
DOI : 10.1111/j.1574-6941.1995.tb00127.x