Advanced
Application of Statistical Analysis to Analyze the Spatial Distribution of Earthquake-induced Strain Data
Application of Statistical Analysis to Analyze the Spatial Distribution of Earthquake-induced Strain Data
The Journal of Engineering Geology. 2013. Dec, 23(4): 353-361
Copyright © 2013, The Korea Society of Engineering Gelology
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : November 05, 2013
  • Accepted : November 28, 2013
  • Published : December 30, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
보람 김
병곤 채
용제 김
용석 서
ysseo@cbu.ac.kr

Abstract
본 연구에서는 00지역 토목용 계측기에서 측정된 지진유발 변형률 데이터의 분포 특성을 분석하기 위한 기법으로 응용통계기법에 대한 적용성을 평가하였다. 2011년 도호쿠 대지진과 같은 해에 발생한 규모 7.0 이상의 여진을 계측한 4방향의 변형률 데이터를 활용하였다. 데이터의 미세한 변동을 감지하기 위하여 단변량 분석기법인 x-MR 분석을 실시하였으며 분석결과 계측 데이터 간의 분산시점에 차이가 발생하는 것을 확인하였다. 이러한 분산시점의 차이를 해결하기 위하여 변형률 데이터 간의 상관성을 고려한 다변량 통계분석을 실시하였다. 다변량 분석기법 가운데 하나인 주성분 분석결과를 T 2 과 Q-통계량 분석에 적용하여 신뢰구간 99.9%, 99.0%, 95.0%로 실시간 분석을 수행하였다. 분석결과 T 2 과 Q-통계량 값이 신뢰구간 99.9%를 초과하는 시점은 x-MR 분석의 분산시점과 일치하거나 이른 시간으로 나타났다. 또한, 신뢰구간 95.0%와 99.0%를 초과하는 시점은 99.9%를 초과하는 시점 이전에 타점되어 지진발생 전에 이상 분포 발생을 예측할 수 있었다. 이러한 결과는 변형률 데이터의 비정상적인 분포 특성을 다변량 통계분석법으로 인지할 수 있다는 것을 의미한다. 따라서 다변량 통계분석은 변형률 데이터의 분포 특성을 분석하여 지진을 예지하는 방법으로 이용가능하다고 판단된다.
Keywords
서 론
지진 연구의 궁극적인 목표인 지진예지를 위하여 본진(mainshock)에 대한 연구와 동시에 전진(foreshock)과 후진(aftershock)에 대한 연구를 수행하는 것은 매우 중요하다. 이러한 연구는 지진이 자주 발생하는 지역에서 장기간 계측을 통해 축적한 많은 양의 데이터를 기반으로 한다. 지진 연구가 활발하게 이루어지고 있는 일본, 미국, 대만 등은 본진뿐만 아니라 전진과 후진에 대한 분석을 과거부터 수행해 왔다 (John and Paul, 1970 ; Vyacheslav and Valeria, 2001 ; Jeffrey et al., 2005 ; Youichi et al., 2011 ; Chepkunas et al., 2013) .
국내의 지진 계측 데이터는 누적기간이 짧고, 우리나라 인근에서 발생하는 지진이 대부분 약진이기 때문에 본진에 대한 연구가 주를 이루고 있다 (Kim, 2007 ; Yun and Park, 2007 ; Yun, 2008 ; Sun, 2009) . 현재 국내에는 지진 발생을 신속하게 인지하고 통보하기 위한 지진조기경보시스템과 신속지진피해 통보시스템이 구축되어 있다. 그러나 지진통보시스템에 적용할 수 있는 데이터분석기법에 제한이 있고 방대한 데이터를 처리하는 부분에서 문제가 발생하면서, 시스템 설비뿐만 아니라 데이터 처리 방식에 대한 다양한 연구와 분석기법의 제안이 요구되고 있다 (Sheen et al., 2012 ; Yun, 2012) .
따라서 본 연구에서는 지진유발 변형률 데이터의 분포 특성을 실시간으로 평가하는 방법으로 응용통계기법을 제안하고자 한다. 00지역 토목용 계측기에서 측정된 변형률 데이터를 이용하여 2011년 3월 11일 오후 2시 46분(UTC)에 발생한 규모 9.0의 도호쿠 대지진과 2011년 4월 7일에 발생한 규모 7.1의 지진, 2011년 4월 11일에 발생한 규모 7.1의 지진을 분석하였다.
연구방법
변형률 데이터에 대한 분석은 약 1년 동안 계측된 데이터 중 도호쿠 대지진과 이후에 발생한 규모 7.0 이상의 조건을 충족한 2개 지진에 대한 데이터 추출, 계측값의 표준화(normalization), 단변량 통계분석, 다변량 통계분석, 분석결과 비교 순서로 실시하였다( Fig. 1 ).
PPT Slide
Lager Image
Flow chart of strain data analysis using statistical methods.
- 변형률 데이터
본 연구에서는 00지역에 설치된 토목용 계측기의 4방향 변형률 데이터를 이용하였다. 약 1년 동안 계측된 데이터 중 도호쿠 대지진과 이후 발생한 2회의 지진을 계측한 데이터를 분석하였다. 도호쿠 대지진이 발생한 지역은 일본 동부 해안 인근(위도 38.3N, 경도 142.4E)으로 계측기가 설치된 위치와 약 1,225 km 떨어져 있다. 도호쿠 대지진 발생 약 1개월 후인 2011년 4월 7일 오후 11시 32분 41초에 발생한 규모 7.1의 지진은 위도 38.2N, 경도 141.6E에서 발생하였고 계측기가 설치된 위치와 약 1,176 km 떨어져 있다. 2011년 4월 11일 오후 5시 16분 13초에 발생한 규모 7.1의 지진이 발생한 위치는 위도 37.0N, 경도 140.5E이며 계측기가 설치된 위치와 약 1,050 km 떨어져 있어 계측기와 가장 가까운 위치에서 지진이 발생하였다( Table 1 and Fig. 2 ).
List of seismic events detected in Korea.
PPT Slide
Lager Image
List of seismic events detected in Korea.
PPT Slide
Lager Image
Location map showing seismic events ( ■ ) and the measurement station (☆) (after Map Finder).
4방향의 변형률계(strainmeter) A~D는 동일 지점에 설치되었으며 설치 방향이 각각 다르다. 따라서 데이터별로 변형률 값의 분포 특성에 차이가 있다. 데이터의 분포를 가시적으로 나타내고자 지진 발생 시점을 포함하여 600초 동안의 데이터를 타점하였고, 계측값의 변화를 자세히 관찰하기 위하여 계측값에서 분석구간 내 데이터의 평균값을 빼고 타점하였다( Fig. 3 ~ Fig. 5 ). 이벤트 2와 3은 지진 규모가 비슷하므로 변형률 데이터의 변동 폭이 비슷하고 이벤트 1은 상대적으로 지진 규모가 크기 때문에 변형률의 진동 폭 또한 비교적 크게 나타났다.
PPT Slide
Lager Image
Strain data measurements for event 1.
PPT Slide
Lager Image
Strain data measurements for event 2.
PPT Slide
Lager Image
Strain data measurements for event 3.
- 분석이론
통계분석은 종속변수의 수에 따라서 크게 단변량 통계분석과 다변량 통계분석으로 구분한다. 종속변수가 하나일 경우에 단변량 통계분석을 사용하고, 종속변수가 여러 개인 경우에는 다변량 통계분석을 사용한다. 본 연구에서는 한 방향의 변형률 데이터를 하나의 종속변수로 설정하고 x-MR 분석을 수행하였다. 또한, 변형률 데이터 간의 상관성을 고려한 다변량 통계분석을 수행하기 위하여 주성분 분석 모델을 구성한 후, T 2 과 Q-통계량을 산정하여 분산시점을 판단하였다.
다변량 통계분석은 단변량 통계분석에서는 변수 간의 상관관계를 고려할 수 없다는 단점을 극복하기 위하여 1990년 초 Mac Fregor가 제안한 방법이다. 이후 다변량 통계분석은 데이터 간의 상관관계를 고려한 분석을 수행하기 위해 다양한 분야에 적용되고 있다 (Yoo et al., 2008) . Fig. 6 은 단변량 통계분석과 다변량 통계분석의 특징을 나타낸 것이다. 가로축과 세로축으로 각각 단변량 통계분석을 실시할 경우에 관리한계선을 넘은 데이터(◆)는 통계적으로 이상상태로 판단되고, 관리한계선 내에 타점된 데이터(⊕)는 정상상태로 판단된다. 하지만 ◆는 정상값, ⊕는 이상값으로 통계적으로 정확한 판단이 이루어지지 않은 것이다. 두 데이터의 상관성을 고려하여 다변량 통계분석을 실시하면 타원 내부에 타점된 데이터(◆)는 정상상태로 판단되고, 타원 밖에 타점된 데이터(⊕)는 이상상태로 판단된다.
PPT Slide
Lager Image
Characteristics of univariate statistical analysis and multivariate statistical analysis (Kourti and MacGregor, 1995).
주성분 분석은 데이터의 특성을 반영하여 낮은 차원의 데이터로 변환하는 방법으로 식 (1)로 간단하게 표현할 수 있다. 여기서 T 는 스코어 행렬, P 는 로딩 행렬, E 는 잔차 행렬을 의미한다. 주성분 분석결과 산정된 각 행렬은 T 2 과 Q-통계량을 산정할 때 이용된다.
PPT Slide
Lager Image
T 2 -통계량은 주성분 분석 모델에서 스코어 행렬에 해당하는 부분을 이용하여 산정하며 k 번째 샘플의 T 2 은 식 (2)로 계산한다. 여기서 t ( k )는 새로운 계측값의 예측스코어 벡터값, Λ –1 은 선택된 데이터의 고유값의 대각행렬의 역행렬을 의미한다. 관리한계선은 식 (3)으로 산정한다. 여기서 n 은 관측값의 개수, a 는 주성분 분석에서 사용된 주성분의 개수, F (a, n – 1, α) α 분수위에서 자유도가 a n − 1인 F 분포의 임계값이다.
PPT Slide
Lager Image
PPT Slide
Lager Image
Q-통계량은 주성분 분석에서 잔차 행렬에 해당하는 부분을 고려하여 식 (4)로 k 번째 샘플의 SPE 값을 산정하며 식에서 e ( k )는 k 번째 샘플벡터이다. 관리한계선은 식 (5)로 계산하며, 여기서 zα 는 표준정규분포(1−α) 분위수이다. 식 (5)에서 사용된 h 0 θi 는 식 (6)으로 산정하며, 여기서 λi 는 주성분 분석에서 얻어진 고유값, j 는 주성분 분석에서 사용된 주성분의 개수이다. T 2 과 Q-통계량 둘 중 하나의 값이 관리한계선을 넘을 경우에 이상상태로 판단한다 (Jeong, 2011) .
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
분석결과
- x-MR 관리도
계측 데이터 별로 지진 발생 시 데이터의 분포특성이 다르고, 지진 발생 이전에는 데이터 변동 폭이 매우 작은 특징이 있다. 이에 일정 구간 내 최소값과 최대값의 차이를 타점해 분석하는 x-MR 분석을 수행하였다. x-MR 분석은 개별(x) 관리도와 MR (moving range) 관리도를 병합하여 분석하는 방법으로 단변량 통계분석에 속한다.
x-MR 분석을 수행하기 위하여 분석구간은 60초(타점), 관리한계선은 MR 값이 100이 되는 지점으로 설정하였다 (Yim et al., 2007 ; Yim and Seo, 2009) . Fig. 7 은 지진발생시점(●)을 기준으로 x-MR 분산시점(■)과 변형률 값이 최대인 시점(▲)을 타점하여 나타낸 것이다. 지진이 발생한 지점에서 계측기가 설치된 지점까지의 거리와 지진 발생 시 가장 먼저 계측기에 도달하는 P파의 속도(5~8 km/s)를 곱하여 지진파가 계측기에 도달할 것으로 예상되는 시간을 회색구간으로 표시하였다. 이벤트 1에서 변형률이 최대값을 나타내는 시점은 계측기 C의 데이터가 다른 방향의 계측 데이터보다 약 100초 늦게 나타나는 특징을 보이며 x-MR 분석결과 관리한계선을 넘는 값이 타점되는 시점 또한 2~3초 늦게 타점된다. 분산이 발생한 시점은 비교적 빠른 속도로 지진파가 도달할 것으로 예상되는 시점에 타점되었다( Fig. 7 (a)). 이벤트 2는 변형률 데이터의 최대값을 나타내는 시점이 계측기별로 다르게 나타났다. 계측기 A와 D는 변형률의 최대값이 거의 비슷한 시점에 나타났으나, 계측기 B와 C는 100초 이상 늦게 타점되었다. x-MR 분석결과분산이 발생하는 시점은 계측기별로 2초의 차이가 발생하였다. 지진파가 약 6 km/s의 속도로 전달되었다고 계산되는 시점에 x-MR 분산이 발생하였다( Fig. 7 (b)). 이벤트 3은 변형률의 최대값이 타점된 시점이 거의 비슷하게 나타났다. 하지만 x-MR 분석결과 계측기간 분산시점의 차이가 8초로 나타나 다른 이벤트의 분석결과와 비교하여 가장 큰 차이를 보였다. 지진파가 약 7 km/s의 속도로 전달되었다고 계산되는 시점에 x-MR 분산이 발생하였다( Fig. 7 (c)).
PPT Slide
Lager Image
Relative occurrence times of events, dispersion of x-MR analysis, and maximum peak of strain data.
총 3회의 이벤트들은 지진의 규모, 진원의 깊이, 지진발생 메커니즘 등의 차이가 있으며 이러한 요소가 복합적으로 반영되어 지진파 전달 속도의 차이가 발생한 것으로 판단된다. 계측기별 분산 시점의 차이가 발생한 것은 설치 방향과 지진파 전달 방향 등의 영향 요소가 있을 것으로 판단된다. 상대적으로 이벤트 1의 규모가 크고, 이벤트 2와 3의 규모는 비슷한 점을 고려하면 지진유발 변형률 데이터의 분포 특성과 x-MR에서 분산이 발생하는 시점 사이의 상관성은 적게 나타났다.
- 주성분 분석을 이용한 T2과 Q-통계량
다변량 통계분석 기법은 이벤트와 계측기의 설치방향 등 여러 조건에 구애받지 않고 변량 간의 상관관계를 고려한 분석을 수행하여 통계적으로 더 정확한 판단을 수행할 수 있으며, 데이터에서 발생한 오류를 인지하고 이상분포 발생과 구분하기에 용이하다. 본 연구에서는 통계분석 프로그램 R을 이용하여 실시간으로 주성분 분석을 수행하였다. 주성분 분석결과를 이용하여 T 2 과 Q-통계량 그래프를 작성하고 관리한계선을 신뢰구간 99.9%, 99.0%, 95.0%로 구분하여 분석을 수행하였다. T 2 과 Q-통계량 분석결과 중 하나 이상에서 신뢰구간 99.9%가 넘는 값이 타점되면 이상분포가 발생한 것으로 판단하였다.
Fig. 8 에 신뢰구간별로 한계선을 넘는 값이 발생한 시점을 타점하였고 x-MR분석에서 분산이 발생한 시점을 점선으로 나타냈다. 단변량과 다변량 분석결과를 비교하기 위하여 x-MR분산 결과 중 가장 이른시간에 분산이 발생한 시점을 표시하였다. 이벤트 1과 2는 다변량에서 이상분포가 발생한 시점과 x-MR에서 분산이 발생한 시점이 일치하였고, 이벤트 3은 다변량 분석에서 2초 앞서 이상분포를 감지하였다. 다변량 통계분석에서 이상분포 발생 시점은 x-MR 분석에서 분산이 발생한 시점 중에서 가장 이른 시간과 일치하거나 이보다 빠른 시간이었다. 다변량 분석은 단변량 분석에서 계측 데이터별로 분산시점에 차이를 보이는 점을 해결하고 실시간으로 데이터의 분포 특성을 분석할 때 정확하게 지진을 감지하기 유용하다고 판단된다. 또한, 신뢰구간 99.9%를 넘는 값이 발생하기 이전에 신뢰구간 99.0%와 95.0%를 넘는 값이 타점되어 단계적으로 이상분포 발생을 판단할 수 있었다. 본 연구에서 신뢰구간을 3개로 설정하여 이상분포를 판단한 점은 지진예지시스템의 단계적인 예측을 위하여 적용가능하다고 판단된다.
PPT Slide
Lager Image
Comparison of the exceeding time between the control limits of 99.9%, 99.0%, and 95.0%.
최근 지진 연구가 활발해 지면서 지진 계측을 위하여 속도와 가속도뿐만 아니라 온도, 조수간만의 차, 대기압 등 다양한 인자에 대한 분석이 이루어지고 있다. 데이터마다 특성이 다르므로 독립적으로 지진을 계측하거나 주로 측정된 데이터에 영향 인자로서의 역할을 할 수 있기 때문이다. 본 연구에서 사용된 변형률 데이터 또한 계측 방향에 따라 데이터 분포 특성에 차이가 있다. 변형률 데이터의 분포 특성이 계측기 설치 방향에 따라 다르다는 점은 x-MR 분석결과에서 확인하였다. 각 데이터의 분산시점은 계측기의 설치방향에 따라 2초에서 8초의 차이를 보였다. 지진을 인지하고 통보하기 위한 실시간 계측 시스템에 통계분석기법을 적용하기 위하여 이러한 시간 차이를 해결해야 한다. 문제를 해결하기 위하여 데이터 간의 상관성을 고려하여 이상분포를 판단하는 다변량 통계분석을 적용했으며 본 연구에서는 주성분 분석을 이용한 T 2 과 Q-통계량을 이용하여 분석하였다. 분석결과 99.0%의 신뢰구간을 넘어 분산이 발생하는 시점에 x-MR 분석결과 중 가장 빠른 분산시점과 일치하거나 빠르게 나타났기 때문에 분산시점에 차이가 발생하는 x-MR 분석결과의 문제점을 극복할 수 있었다. 단변량 분석에서 하나의 데이터가 분산이 발생하였다고 해서 이상분포가 발생한 것으로 판단한다면 계측상의 오류를 이상분포 발생으로 잘못 판단할 수 있기 때문에 실시간으로 데이터를 처리하여 이상분포를 판단하기에 다변량분석이 유용하다. 또한, 다변량 통계 분석기법은 같은 종류의 계측데이터뿐만 아니라 다양한 계측인자 간에 상관성을 고려하여 분석할 수 있으므로 앞으로 국내에서 동시 계측되는 다양한 지진 데이터에 대한 분석기법으로 적용가능하다. 따라서 다양한 분야에서 검증된 응용통계기법을 적절히 이용한다면 지진통보시스템에 적용할 수 있다고 판단된다.
결 론
지진유발 변형률 데이터의 분포특성을 분석하는 방법으로 응용통계기법의 적용성을 평가하기 위하여 국내 00지역에서 계측된 데이터 중 도호쿠 대지진과 이후에 발생한 규모 7.0 이상의 2회의 지진을 계측한 데이터를 분석하였다. 먼저, x-MR 관리도 분석결과 지진 발생 시점으로부터 지진파(5~8 km/s)가 계측기에 도달할 것으로 예상되는 시간 내에 데이터의 분산이 발생하였다. 지진파 전달 속도는 이벤트 1은 약 8 km/s, 이벤트 2는 약 6 km/s, 이벤트 3는 약 7 km/s로 계산되는 시점에 분산이 발생하였고 분산시점 또한 계측기 별로 이벤트 1은 3초, 이벤트 2는 2초, 이벤트 3은 8초의 시간차이가 발생하였다. 지진통보시스템에 적용하기 위하여 분산시점에 차이가 발생하는 문제를 해결하고 일부 계측 데이터에서 발생하는 오류를 이상분포와 구분하기 위하여 다변량 통계분석을 수행하였다. 주성분 분석을 이용한 T 2 과 Q-통계량 분석을 실시하였으며 관리한계선을 신뢰구간 99.9%, 99.0%, 95.0%로 구분하여 분석을 수행하였다. 분석결과 이상분포 발생 시점은 단변량 분석에서 분산이 발생한 시점과 거의 일치했으나 99.0%와 95.0% 신뢰구간을 넘는 값이 미리 타점되어 단계적으로 이상분포 발생을 판단할 수 있었다.
단변량 분석을 이용하여 계측데이터별로 분산시점을 파악할 수 있었다. 지진 계측을 위해 측정되는 다양한 인자에 대한 독립적인 데이터 특성을 연구하는데 이용될 수 있다. 하지만 x-MR 분석결과에서 계측데이터별로 분산시점에 차이가 발생하는 점은 지진통보시스템에 통계분석기법을 적용하기 위하여 해결해야 하는 부분이다. 따라서 지진예지시스템에 통계분석기법을 적용할 경우에 실시간으로 정확한 분산시점을 파악하기 위해서는 다변량 통계분석이 유용하다고 판단된다.
Acknowledgements
본 연구는 2012년도 산업통상자원부의 재원으로 한국에너지 기술평가원(KETEP)의 지원을 받아 수행한 연구과제입니다(2012171020001B).
BIO
김보람
한국지질자원연구원 지구환경연구본부
305-350 대전광역시 유성구 과학로 124
Tel : 042-868-3378
E-mail : boram2077@kigam.re.kr
채병곤
한국지질자원연구원 지구환경연구본부
305-350 대전광역시 유성구 과학로 124
Tel : 042-868-3052
E-mail : bgchae@kigam.re.kr
김용제
한국지질자원연구원 지구환경연구본부
305-350 대전광역시 유성구 과학로 124
Tel : 042-868-3270
E-mail : yjkim@kigam.re.kr
서용석
충북대학교 지구환경과학과
361-763 충북 청주시 흥덕구 내수동로 52
Tel : 043-261-2765
E-mail : ysseo@cbu.ac.kr
References
Chepkunas L. S. , Rogozhin E. A. , Ryzhikova M. I. , Malyanova L. S. 2013 Monitoring of Spectral Parameters of Longitudinal Waves from the Strongest Earthquakes in Honshu Island, Japan in 2011 Seismic Instruments 49 (1) 27 - 35    DOI : 10.3103/S0747923913010040
Jeffrey J. M. , Margaret S. B. , Thomas H. J. 2005 Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Nature 434 457 - 461    DOI : 10.1038/nature03377
Jeong S. J. , Ph.D. 2011 Evaluation of Abnormal Behavior of Geotechnical Structure Using Multivariate Statistical Analysis thesis in engineering at the Korea Maritime and Ocean University Ph.D. (In Korean with English abstract) 34 - 43
John L. , Paul W. P. 1970 The foreshock-aftershock sequence of the March 20 1966 earthquake in the Republic of Congo The Seismological Society of America 60 (4) 1245 - 1258
Kim J. K. 2007 A Study for Earthquake Parameter of Odaesan Earthquake The Journal of Engineering Geology (In Korean with English abstract) 17 (4) 665 - 672
Kourti T. , MacGregor J. F. 1995 Process analysis, monitoring and diagnosis, using multivariate projection methods Chemometrics and Intelligent Laboratory Systems 28 3 - 21    DOI : 10.1016/0169-7439(95)80036-9
Sheen D. H. , Lim I. S. , Park J. H. , Chi H. C. 2012 Earthquake magnitude determination using P phase for earthquake early warning Journal of the Geological Society of Korea (In Korean with English abstract) 48 (1) 101 - 111
Sun C. G. 2009 Assessment of Seismic Site Response at Hongseong in Korea Based on Two-dimensional Basin Modeling using Spatial Geotechnical Information The Journal of Engineering Geology 19 (1) 15 - 23
Vyacheslav M. Z. , Valeria I. L. 2001 The Rupture Process of the Mw 7.8 Cape Kronotsky, Kamchatka, Earthquake of 5 December 1997 and Its Relationship to Foreshocks and Aftershocks The Seismological Society of America 91 (6) 1619 - 1628    DOI : 10.1785/0119990116
World Map Finder http://www.worldmapfinder.com/bingmaps
Yim S. B. , Kim S. K. , Seo Y. S. , Park S. H. 2007 A Study on Convergency of Tunnel Displacement using Control Chart Method The Journal of Engineering Geology (In Korean with English abstract) 17 (2) 197 - 204
Yim S. B. , Seo Y. S. 2009 A New Method for the Analysis of Measured Displacements during Tunnelling using Control Charts The Journal of Engineering Geology (In Korean with English abstract) 19 (3) 261 - 268
Yoo C. K. , Choi S. W. , Lee I. B. 2008 Recent Research Trends of Process Monitoring Technology the Korean institute of chemical engineers (In Korean with English abstract) 46 (2) 233 - 247
Youichi A. , Tatsuhiko S. , Yoshihiro I. , Katsuhiko S. , Hitoshi H. , Takumi M , Shin A. , Sadaki H. , Shoji S. 2011 Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake Earth Planets Space 63 669 - 673    DOI : 10.5047/eps.2011.06.016
Yun K. H. 2008 Fault rupture directivity of Odaesan Earthquake (M=4.8, `07. 1. 20) Geophysics and Geophysical Exploration (In Korean with English abstract) 11 (2) 137 - 147
Yun K. H. 2012 Study on the Use of Bracketed Summations of the Peak Ground-motion Acceleration Per Second for Rapid Earthquake Alert Notifications Earthquake Engineering Society of Korea (In Korean with English abstract) 16 (1) 37 - 45    DOI : 10.5000/EESK.2012.16.1.037
Yun K. H. , Park D. H. 2007 Characteristics of the Point-source Spectral Model for Odaesan Earthquake (M = 4.8, `07. 1. 20) Geophysics and Geophysical Exploration (In Korean with English abstract) 10 (4) 241 - 251