Advanced
Ferrocenyl Chalcones with 1- and 2-Naphthalenyl Group: Spectroscopic Characterizations and Electrochemical Properties
Ferrocenyl Chalcones with 1- and 2-Naphthalenyl Group: Spectroscopic Characterizations and Electrochemical Properties
Journal of the Korean Chemical Society. 2014. Oct, 58(5): 496-499
Copyright © 2014, Korea Chemical Society
  • Received : June 27, 2014
  • Accepted : August 07, 2014
  • Published : October 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Hyokyung Jeon
Ji-Won Lee
Sung-Ye Song
Dong-Youn Noh

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
EXPERIMENTAL
Electron ionization-mass spectrometry (EI-MS) measurement was performed at the National Center for Inter-University Research Facilities (NCIRF). Infrared spectra were recorded by the KBr pellet method using a Perkin Elmer Spectrum 100 spectrometer between 4,000−400 cm −1 . 1 H NMR measurements were performed at room temperature using an Avance 300 (Bruker) spectrometer using CDCl 3 as the solvent. UV-Vis spectra were measured using an HP 8452A diode array spectrophotometer. Fluorescence spectra of 1Naph-Fc and 2Naph-Fc were recorded at room temperature in several solvents such as CHCl 3 , CH 3 CN, EtOH and MeOH using a Cary Eclipse fluorescence spectrophotometer (Varian). Electrochemical properties of Naph-Fc compounds were investigated by cyclic voltammetry at room temperature using a CHI 620A electrochemical analyzer (CHI Instrument Inc.) under the following conditions: 0.5 mM sample and 0.1 M n-Bu 4 N·BF 4 electrolyte dissolved in 10 mL CH 2 Cl 2 , using round-disk ( r = 0.2 cm) Pt working-electrode, Ag/AgCl reference electrode, and Pt-wire counter electrode ( φ = 0.5 mm) at a scan rate of 100 mV s −1 . All the redox potentials were measured against reference Fc/Fc + redox couple ( E 1/2 = 0.554 V).
- Preparation of 1Naph-Fc
An ethanol solution (40 mL) of ferrocenecarboxaldehyde (215 mg, 1 mmol), 1-acetonaph-thone (0.152 mL, 1 mmol), and NaOH (200 mg, 5 mmol) was stirred overnight at room temperature ( 2 ). The red-colored reaction mixture was then dried under reduced pressure. The product was extracted with CH 2 Cl 2 and dried with anhydrous MgSO 4 . After filtration, the solution was evaporated. The solid product was then purified by column chromatography (SiO 2 , CH 2 Cl 2 ). EI-MS (m/z, %) 366 (M + , 100), 301(M + −C p , 90); FTIR (KBr, cm −1 ): 3093, 2926 (Ar C−H), 1655, 1628 (C=C), 1580 (C=O), 1508, 1460 (Ar C=C), 1284, 1247, 1133, 1104, 1044 (Ar C−H ip def), 806, 780 (Ar C−H oop def), 484, 497 (Fe-ring vib); 1 H NMR (300 MHz, ppm, CDCl 3 ) δ 8.27 (1H, CH, d, J = 9.60 Hz), 7.97 (2H, CH, m), 7.70 (1H, CH, d, J = 6.90 Hz), 7.58 (3H, CH, m), 7.48 (1H, CO−CH=CH, d, J = 15.6 Hz), 6.89 (1H, CO−CH=CH, d, J = 15.6 Hz), 4.55 (2H, C p , t, J = 1.80 Hz), 4.50 (2H, C p , t, J = 1.80 Hz), 4.19 (5H, C p , s).
- Preparation of 2Naph-Fc
An ethanol solution (40 mL) of ferrocenecarboxaldehyde (215 mg, 1 mmol), 2-acetonaph-thone (170 mg, 1 mmol), and NaOH (200 mg, 5 mmol) was stirred overnight at room temperature ( 2 ). The red-colored reaction mixture was then dried under reduced pressure. The product was extracted with CH 2 Cl 2 and dried with MgSO 4 . After filtration, the solution was evaporated. The solid product was then purified by column chromato-graphy (SiO 2 , CHCl 3 :CH 2 Cl 2 = 1:5). EI-MS (m/z, %) 366 (M + , 100), 301(M + −C p , 80); FTIR (KBr, cm −1 ) 3089, 3058, 2926 (Ar C−H), 1653, 1627 (C=C), 1586 (C=O), 1470 (Ar C=C), 1250, 1216, 1187, 1125, 1026 (Ar C−H ip def), 822, 757 (Ar C−H oop def), 497, 480 (Fe-ring vib); 1 H NMR (300 MHz, ppm, CD 2 Cl 2 ) δ 8.55 (1H, CH, s), 8.08 (2H, CH, m), 7.97 (2H, CH, m), 7.83 (1H, CO−CH=CH, d, J = 15.3 Hz), 7.64 (2H, CH, m), 7.36 (1H, CO−CH=CH, d, J = 15.3 Hz), 4.71 (2H, C p , t, J = 1.80 Hz), 4.56 (2H, C p , t, J = 1.80 Hz), 4.24 (5H, C p , s).
Acknowledgements
This work was supported by a research grant from Seoul Women’s University (2013).
References
Liu M. , Wilairat P. , Go M. L. 2001 J. Med. Chem. 44 4443 -
Padhye S. , Ahmad A. , Oswal N. , Dandawate P. , Rub R. A. , Deshpande J. , Swamye K. V. , Sarkar F. H. 2010 Bioorg. Med. Chem. Lett. 20 5818 -
Cabrera M. 2010 Bioorg. Med. Chem. 18 5391 -
Ono M. , Ikeoka R. , Watanabe H. , Kimura H. , Fuchigami T. , Haratake M. , Saji H. , Nakayama M. 2010 ACS Chem. Neurosci. 1 598 -
Gaikwad P. , Priyadarsini K. I. , Naumov S. , Rao B. S. M. 2010 J. Phys. Chem. A 114 7877 -
Fouda M. F. R. , Abd-Elzaher M. M. , Abdelsamaia R. A. , Labib A. A. 2007 Appl. Organomet. Chem. 21 613 -
Wu X. , Tiekink E. R. T. , Kostetski I. , Kocherginsky N. , Tan A. L. C. , Khoo S. B. , Wilairat P. , Go M. L. 2006 Eur. J. Pharm. Sci. 27 175 -
Delavaux-Nicot B. , Maynadie J. , Lavabre D. , Fery-Forgues S. 2007 J. Organomet. Chem. 692 874 -
Lee S. K. , Lim C. M. , Lee J. Y. , Noh D. Y. 2011 Bull. Korean Chem. Soc. 32 321 -
Jung Y. J. , Son K. I. , Oh Y. E. , Noh D. Y. 2008 Polyhedron 27 861 -
Son K. I. , Kang S. Y. , Noh D. Y. 2009 Bull. Korean Chem. Soc. 30 513 -
Son K. I. 2008 Ph.D. Thesis Seoul Women’s University Seoul
Lee S. K. , Noh Y. S. , Son K. I. , Noh D. Y. 2010 Inorg. Chem. Commun. 13 1343 -
Suh W. , Jeon H. , Lee J. Y. , Lim C. M. , Lee S. K. , Noh D. Y. 2012 Bull. Korean Chem. Soc. 33 443 -
Silverstein R. M. , Bassler G. C. , Morrill T. C. 1991 Spectroscopic Identification of Organic Compounds 5th ed. John Wiley Singapore
Fery-Forgues S. , Delavaux-Nicot B. 2000 J. Photochem. Photobiol. A 132 137 -
Lee H. J. , Noh D. Y. , Underhill A. E. , Lee C. S. 1999 J. Mater. Chem. 9 2359 -