Advanced
Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature
Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature
Journal of the Korean Chemical Society. 2013. Dec, 57(6): 703-711
Copyright © 2013, Korea Chemical Society
  • Received : October 08, 2012
  • Accepted : October 28, 2013
  • Published : December 20, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Aniruddha Ghosh
Rumpa Saha
Sumanta K. Ghosh
Kakali Mukherjee
Bidyut Saha

Abstract
In the present investigation, kinetic studies of oxidation of formic acid with and without catalyst and promoter in aqueous acid media were studied under the pseudo-first order conditions [formic acid]T >>[Cr(VI)] T at room temperature. In the 1,10-phenanthroline (phen) promoted path, the cationic Cr(VI) phen complex is the main active oxidant species undergoes a nucleophilic attack by the substrate to form a ternary complex which subsequently experiences a redox decomposition through several steps leading to the products CO 2 and H 2 along with the Cr(III) phen complex. The anionic surfactant (i.e., sodium dodecyl sulfate, SDS) and neutral surfactant (i.e., Triton X-100, TX-100) act as catalyst and the reaction undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Whereas the cationic surfactant (i.e., N-cetyl pyridinium chloride, CPC) acts as an inhibitor restricts the reaction to aqueous phase. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. The neutral surfactant TX-100 has been observed as the suitable micellar catalyst for the phen promoted chromic acid oxidation of formic acid.
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
EXPERIMENTAL
1,10-Phenanthroline (AR, Merck, Mumbai, India), formic acid (AR, Qualigens, Mumbai, India), K 2 Cr 2 O 7 (AR, BDH, India), H 2 SO 4 (AR, Qualigens, Mumbai, India), sodium dodecyl sulfate (AR, SRL, Mumbai, India), TX-100 (AR, SRL, Mumbai, India) and all other chemicals used were of highest degree of purity available commercially. All the solutions were prepared in double distilled water. Solutions of the oxidant and reaction mixtures containing the known quantities of the substrate (s) (i.e., formic acid), promoter (1,10-phenanthroline) under the kinetic conditions [formic acid] >> [Cr(VI)] T . Acid and other necessary chemicals were separately thermostated (± 0.10 ℃). The reaction was initiated by the requisite amounts of the oxidant with the reaction mixture. Progress of the reaction was monitored by following the decay of Cr(VI) at 450 nm wavelength at different different time intervals with the UV-vis [UV-VIS-NIR-3600 (SHIMADZU)] spectrophotometer equipped with a temperature controller. Quartz cuvettes of path length 1 cm were used. The pseudo-first-order rate constants ( k obs , s −1 ) were calculated from the slope of plots of ln(A 450 ) versus time (t) which were linear. 11 The scanned spectra and spectrum after completion of the reaction were recorded with a UV-vis spectrophotometer [UV-1800 and UV-VIS-NIR-3600 (SHIMADZU)]. A large excess (15-fold) of reductant was used in all kinetic runs. No interference was observed due to other species at 450 nm.
Surfactant micelles provide an unusual medium, which may affect the rate of reaction. One of the most important properties of micellar system is their ability to affect the rate of the chemical reaction. The effect of surfactants on reaction kinetics is called micellar catalysis involves several contributing factors. Notably, formic acid has been widely used as hydrogen source in liquid-phase transfer hydrogenation reactions of carbon dioxide in the presence of base such as amines under ambient conditions. The excess formic acid can be reoxidized to get the deserved product with further addition of chromic acid, maintaining the same reaction condition. Obviously, electrostatic attraction/repulsion plays an important role during the course of the reaction in the presence of ionic surfactants. All the surfactant concentrations used during each set of experiments are above their critical micelle concentration (CMC). The CMC values of all the three surfactants are known from earlier literature. So CMC values are very helpful to prepare the solutions of surfactants in particular concentration. Combination of TX- 100 micelle and phen promoter enhances the reaction almost 600 times faster compared to the uncatalyzed and unpromoted reaction. The mechanistic paths of uncatalyzed unpromoted and SDS catalyzed phen promoted chromic acid oxidation of glycerol have also been compared. SDS micelle in absence of phen enhances the oxidation rate compared to the TX-100 micelle. But in combined reaction mixture i.e., in presence of phen the reaction rate is highly accelerates in TX-100 micelle compared to SDS micelle. It is also noted that the cationic micelle CPC retards the reaction compared to the uncatatalyzed and unpromoted reaction. The Cr(VI)−phen complex, a cationic species has been found to act as the active oxidant in the phen-promoted chromic acid oxidation of formic acid. The generation of the final Cr(III) species after the completion of the reaction has been investigated by a series of spectral observation by UV-visible spectrophotometer. The present method of formic acid oxidation is simple, accurate, rapid, economical, and precise. In conclusion, it can be said that neutral micelle TX-100 is an efficient micellar catalyst for the phen promoted chromic acid oxidation of formic acid.
Acknowledgements
Thanks to UGC, New Delhi and CSIR, New Delhi for providing financial help in the form of project and fellowship. Thanks also to The University of Burdwan, Burdwan, India for providing infra-structural facilities and the publication cost of this paper was supported by the Korean Chemical Society.
References
Sundaram S. , Raghavan P. S. 2011 Chromium-VI reagents: Synthetic Application Springer New York
Purohit P. , Kumbhani S. , Shashtri I. , Banerjee K. K. , Sharma P. K. 2008 Indian J. Chem. 47 1671 -
Banerji J. , Kotai L. , Banerji K. K. 2009 Indian J. Chem. 48 797 -
Saha B. , Orvig C. 2010 Coord. Chem. Rev. 254 2959 -    DOI : 10.1016/j.ccr.2010.06.005
Holmes A. L. , Wise S. S. , Wise J. P. 2008 Indian J. Med. Res. 128 353 -
Saha R. , Nandi R. , Saha B. 2011 J. Coord. Chem. 64 1782 -    DOI : 10.1080/00958972.2011.583646
Das A. K. 2004 Coord. Chem. Rev. 248 81 -    DOI : 10.1016/j.cct.2003.10.012
Ghosh A. , Saha R. , Mukhejee K. , Ghosh S. K. , Bhattacharyya S. S. , Laskar S. , Saha B. 2013 Int. J. Chem. Kinet. 45 175 -    DOI : 10.1002/kin.20754
Basu A. , Ghosh S. K. , Saha R. , Ghosh A. , Ghosh T. , Mukherjee K. , Bhattacharyya S. S. , Saha B. 2012 Tenside Surf. Det. 49 481 -
Ghosh S. K. , Saha R. , Ghosh A. , Mukherjee K. , Saha B. 2012 Tenside Surf. Det. 49 370 -
Ghosh S. K. , Ghosh A. , Saha R. , Saha B. 2012 Tenside Surf. Det. 49 296 -
Saha R. , Ghosh S. K. , Ghosh A. , Saha I. , Mukherjee K. , Basu A. , Saha B. 2013 Res. Chem. Intermed. 39 631 -    DOI : 10.1007/s11164-012-0585-y
Ghosh S. K. , Saha R. , Mukherjee K. , Ghosh A. , Bhattacharyya S. S. , Saha B. 2012 J. Korean Chem. Soc. 56 164 -    DOI : 10.5012/jkcs.2012.56.1.164
Ghosh S. K. , Basu A. , Saha R. , Nandi R. , Saha B. 2012 Current Inorg. Chem. 2 86 -    DOI : 10.2174/1877944111202010086
Ghosh S. K. , Basu A. , Saha R. , Ghosh A. , Mukherjee K. , Saha B. 2012 J. Coord. Chem. 65 1158 -    DOI : 10.1080/00958972.2012.669035
Ghosh A. , Saha R. , Mukhejee K. , Ghosh S. K. , Bhattacharyya S. S. , Saha B. 2012 J. Chem. Res. 36 347 -    DOI : 10.3184/174751912X13354447752233
Dimitratos N. , Villa A. , Prati L. 2009 Catal. Lett. 133 334 -    DOI : 10.1007/s10562-009-0192-8
Pawar B. , Padalkar V. , Phatangare K. , Nirmalkar S. , Chaskar A. 2011 Catal. Sci. Technol. 1 1641 -    DOI : 10.1039/c1cy00278c
Minkler S. R. K. , Lipshutz B. H. , Krause N. 2011 Angew. Chem. 123 7966 -    DOI : 10.1002/ange.201101396
Nishikata T. , Lipshutz B. H. 2009 Chem. Commun. 6472 -
Saha R. , Ghosh A. , Saha B. 2011 J. Coord. Chem. 64 3729 -    DOI : 10.1080/00958972.2011.630463
Lepiller C. 2012 Direct Formic Acid Oxidation for Liquid-fed PEM Fuel Cells; Fuel cell Newsletter
Kordesch K. V. , Simader G. R. 1995 Chem. Rev. 95 191 -    DOI : 10.1021/cr00033a007
Yadav M. , Singh A. K. , Tsumori N. , Xu Q. 2012 J. Mater. Chem. 22 19146 -    DOI : 10.1039/c2jm32776g
Boddien A. , Mellmann D. , Gärtner F. , Jackstell R. , Junge H. , Dyson P. J. , Laurenczy G. , Ludwig R. , Beller M. 2011 Science 333 1733 -    DOI : 10.1126/science.1206613
Fukuzumi S. , Kobayashi T. , Suenobu T. 2010 J. Am. Chem. Soc. 132 1496 -    DOI : 10.1021/ja910349w
Loges B. , Boddien A. , Junge H. , Beller M. 2008 Angew. Chem. Int. Ed. 47 3962 -    DOI : 10.1002/anie.200705972
Fellay C. , Dyson P. J. , Laurenczy G. 2008 Angew. Chem. Int. Ed. 47 3966 -    DOI : 10.1002/anie.200800320
Samjeske G. , Miki A. , Ye S. , Osawa M. 2006 J. Phys. Chem. B 110 16559 -    DOI : 10.1021/jp061891l
Alexandris P. , Hatton T. A. 1995 Colloid Surf. 96 1 -
Islam M. , Saha B. , Das A. K. 2005 J. Mol. Catal A: Chem. 236 260 -    DOI : 10.1016/j.molcata.2005.04.019
Islam M. , Saha B. , Das A. K. 2005 Carbohydr. Res. 340 2163 -    DOI : 10.1016/j.carres.2005.07.002
Islam M. , Saha B. , Das A. K. 2006 Int. J. Chem. Kinet. 38 531 -    DOI : 10.1002/kin.20181
Mandal J. , Chowdhury K. M. , Paul K. , Saha B. 2010 J. Coord. Chem. 63 99 -    DOI : 10.1080/00958970903302723
Islam M. , Das A. K. 2008 Carbohydr. Res. 343 2308 -    DOI : 10.1016/j.carres.2008.05.017
Islam M. , Das A. K. 2008 Prog. React. Kinet. Mech. 33 219 -    DOI : 10.3184/146867808X339296
Das A. K. 1999 Inorg. React. Mech. 1 161 -
Das A. K. , Das M. 1994 J. Chem. Soc. Dalton Trans. 589 -
Meenakshisundaram S. P. , Gopalakrishnan M. , Nagarajan S. , Sarathi N. 2007 Catal. Commun. 8 713 -    DOI : 10.1016/j.catcom.2006.08.033
Figgis B. N. 1966 Introduction to Ligand Fields Wiley Eastern Limited New Delhi, India
Khan Z. , Ud-Din K. 2002 Transition Met. Chem. 27 832 -    DOI : 10.1023/A:1021382505230
Islam M. , Saha B. , Das A. K. 2007 J. Mol. Catal. A: Chem. 266 21 -    DOI : 10.1016/j.molcata.2006.10.042
Jorgensen C. K. 1964 Absorption Spectra and Chemical Bonding in Complexes Pergamon Press Ltd Oxford, London
Saha B. , Das M. , Mohanty R. K. , Das A. K. 2004 J. Chin. Chem. Soc. 51 399 -
Taboada P. , Attwood D. , Ruso J. M. , Garcia M. , Sarmiento F. , Mosquera V. 1999 J. Colloid Interface Sci. 220 288 -    DOI : 10.1006/jcis.1999.6545
Akhtar F. , Hoque M. A. 2006 J. Bangladesh Chem. Soc. 19 88 -
Myers D. 1946 Interfaces and Colloids: Principles and Applications VCH Publishers New York
Bhattacharya S. , Kumar V. P. 2005 Langmuir 21 71 -    DOI : 10.1021/la048858f
Zakharova L. , Valeeva F. , Zakharov A. , Ibragimova A. , Kudryavtseva L. , Harlampipidi H. 2003 J. Colloid Interf. Sci. 263 597 -    DOI : 10.1016/f0051-9797(03)00343-6
Svensson R. , Pamedytyte V. , Juodiatyte J. , Makuska R. , Morgenstern R. 2001 Toxicology 168 251 -
Mandal J. , Chowdhury K. M. , Paul K. K. , Saha B. 2008 Open Catal. J. 1 1 -    DOI : 10.2174/1876214X00801010001
Khan Z. , Raju S. M. , Ud-Din K. 2003 Transition Met. Chem. 28 881 -    DOI : 10.1023/A:1026303415289
Meenakshisundaram S. , Markkandan R. 2004 Transition Met. Chem. 29 308 -    DOI : 10.1023/B:TMCH.0000020374.24384.38
Basu A. , Saha R. , Mandal J. , Ghosh S. K. , Saha B. 2010 J. Biomed. Sci. Eng. 3 735 -    DOI : 10.4236/jbise.2010.37098