Advanced
One Pot Synthesis of Bioactive Novel Cyanopyridones
One Pot Synthesis of Bioactive Novel Cyanopyridones
Journal of the Korean Chemical Society. 2013. Aug, 57(4): 476-482
Copyright © 2013, Korea Chemical Society
  • Received : April 09, 2013
  • Accepted : July 15, 2013
  • Published : August 20, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Kamlesh Khokhani
Taslimahemad Khatri
Department of Chemistry, KSKV Kachchh University, Bhuj-Kachchh 370 001, Gujarat, India
Praful Patel

Abstract
Cyanopyridone was prepared by the condensation of cyanoacetamide, substituted arylaldehydes and malononitrile in presence of pipyridine. The structure of the synthesized compound CP 1−20 was assigned on the basis of elemental analysis, IR, 1 H-NMR and mass spectroscopy. These compounds were also screened for antimicrobial activity. The Minimum Inhibitory Concentration (MIC) of all the synthesized compounds was compared with standard drugs.
Keywords
INTRODUCTION
Pyridone and their derivatives play an essential role in several biological processes and have considerable chemical and pharmacological importance. 13 The 2-pyridones represent a unique class of pharmacophore, which are observed in various therapeutic agents 4 and antibiotics. 5 The 3-cyanopyridin-2-one nucleus is the structural basis of the alkaloid ricinine ( I ), the first known alkaloid containing a cyano-group. Cheney et al. reported 4,6-diaryl-2-oxo-1,2-dihydropyridine-3-carbonitriles ( II ), as inhibitors of the oncogenic serine/threonine kinas PIM-1, which plays a role in cancer cell survival, differentiation and proliferation. 6 Wendt et al. showed that several compounds with the same general formula as above ( II ) but with higher lipophilic properties ( III ) can inhibit surviving which is a member of the inhibitor of apoptosis family (IAP). 7
The thienopyridone agonist ( IV ) showed modest AMPK (adenosine monophosphate-activated protein kinase) activity 8 ( . 1 ). These heterocycles attracted attention because of their applications as bioactive compounds for example as a promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) 9 as antibacterial, 10 antifungal, 11 sedative, 12 andcardiotonic agent. 13 Moreover, such derivatives have recently become important due to their structural similarity to nucleosides. 14
They are also versatile precursors for the construction of complex natural products 15 pyridines 16 and larger pyridone systems such as those found in the nitro guanidine insecticide Imidacloprid 17 and subtype selective GABA receptor agonists. Consequently, methodologies for the preparation of pyridones have attracted much attention from both industrial and academic areas.
PPT Slide
Lager Image
Some reported potent cynopyridones.
EXPERIMENTAL
Melting points were determined in open capillary tubes and are uncorrected. Formation of the compounds was routinely checked by TLC on silica gel-G plates of 0.5 mm thickness and spots were located by iodine. IR spectra were recorded Shimadzu FT-IR-8400 instrument using KBr pellet method. Mass spectra were recorded on Shimadzu GC-MS-QP-2010 model using Direct Injection Probe technique. 1 H-NMR was determined using DMSO- d 6 as asolvent on a Bruker Ac 400 MHz spectrometer. Elemental analysis of the all the synthesized compounds was carried out on Elemental Vario EL III Carlo Erba 1108 model and the results are in agreements with the structures assigned.
PPT Slide
Lager Image
Synthesis of 2-cyano-N-(substituted) acetamides.
- Preparations of Cyanoacetamide Derivatives
The disubstituted aniline (10 mmol) and ethyl 2-cyanoacetate (10 mmol) were refluxed on sand bath for 3−4 hours to yield 2-cyano-N-(substituted) acetamides 18 ( 3 ) in good yields ( 1 ).
- General Procedure for Synthesis of Cyanopyridones (CP 1−20)
A mixture of substituted 10 mmol of cyanoacetamide ( 3 ), 10 mmol substituted aldehyde ( 4 ) and 10 mmol of malononitrile ( 5 ) were dissolve in 30 ml of methanol, catalytic amount of pipyridine was added. The reaction mixture was heated under reflux on water bath for 20−22 h (under TLC analysis). After completion of the reaction, filtered product was washed with methanol and recrystalized from ethanol ( 2 ).
6-Amino-1-(2,5-dichlorophenyl)-2-oxo-4-phenyl-1,2- dihydro pyridine-3,5-dicarbonitrile (CP-1): MP: 272−274℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 7.01−7.11 (t, 1H, Ar−H), 7.10−7.12 (t, 2H, Ar−H, J = 11.6 Hz), 7.52−7.55 (t, 2H, Ar−H, J = 11.6 Hz), 7.68−7.69 (d, 1H, Ar−diCl), 7.75−7.78 (d, 1H, Ar−diCl), 7.85 (s, 1H, Ar−diCl), 8.20 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−H), 2218 (C≡N), 1639 (C=O), 774 (C−Cl); MS m/z (%): 380 (M + ), 364 (100), 329 (6), 304 (14), 288 (31), 210 (16), 187 (23), 152 (8), 77 (32). Elemental Analysis for C 19 H 10 Cl 2 N 4 O: Calculated: C, 59.86; H, 2.64; N, 14.70. Found: C, 59.40; H, 2.30; N, 14.35%.
PPT Slide
Lager Image
One spot synthesis of CP 1−20.
6-Amino-1-(2,5-dichlorophenyl)-4-(4-methoxyphenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-2): MP: 280−284 ℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 3.85 (s, 3H, OCH 3 ), 7.12−7.15 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.52−7.55 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.68−7.69 (d, 1H, diCl−Ar−H), 7.75−7.78 (d, 1H, diCl− Ar−H), 7.85 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−H), 2218 (C≡N), 1639 (C=O), 1173 (C−O−C), 774 (C−Cl); MS m/z (%): 410 (M + ), 394 (16), 375 (100), 360 (4), 332 (6), 196 (4), 187 (16), 152 (8), 109 (7), 75 (4). Elemental Analysis for C 20 H 12 Cl 2 N 4 O 2 : Calculated: C, 58.41; H, 2.94; N, 13.62. Found: C, 58.21; H, 2.45; N, 13.33%.
6-Amino-1-(2,5-dichlorophenyl)-4-(2-methoxyphenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-3): MP: 280−284 ℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 3.87 (s, 3H, OCH 3 ), 7.10−7.13 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.54−7.57 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.22−7.28 (t, 2H, 4-OCH 3 −Ar−H,), 7.65−7.67 (d, 1H, diCl−Ar−H), 7.71−7.74 (d, 1H, diCl−Ar−H), 7.84 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−C−H), 2218 (C≡N), 1639 (C=O), 1173 (C−O−C), 774 (C−Cl); MS m/z (%): 410 (M + ), 394 (45), 375 (100), 360 (6), 332 (9), 196 (8), 187 (21), 152 (6), 109 (11), 75 (8). Elemental Analysis for C 20 H 12 Cl 2 N 4 O 2 : Calculated: C, 58.41; H, 2.94; N, 13.62. Found: C, 58.26; H, 2.54; N, 13.46%.
6-Amino-1-(2,5-dichlorophenyl)-4-(4-nitrophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-4): MP: 245−250℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 8.12−8.15 (d, 2H, 4-NO 2 −Ar−H, J = 11.6 Hz), 7.52−7.55 (d, 2H, 4-NO 2 −Ar−H, J = 11.6 Hz), 7.68−7.69 (d, 1H, diCl−Ar−H), 7.75−7.78 (d, 1H, diCl−Ar−H), 7.85 (s, 1H, diCl−Ar− H), 8.38 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−C−H), 2218 (C≡N), 1639 (C=O), 1355− 1315 (NO 2 ), 774 (C−Cl); MS m/z (%): 425 (M + ), 304 (25), 288 (100), 237 (15), 210 (12), 187 (5), 152 (7), 126 (13), Elemental Analysis for C 19 H 9 Cl 2 N 5 O 3 : Calculated: C, 53.54; H, 2.13; N, 16.43. Found: C, 53.22; H, 2.04; N, 16.18%.
6-Amino-1-(2,5-dichlorophenyl)-4-(2-nitrophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-5): MP: 234−236℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 8.10−8.13 (d, 2H, 2-NO 2 −Ar−H, J = 11.6 Hz), 7.22−7.25 (d, 2H, 2-NO 2 −Ar−H, J = 11.6 Hz), 7.54−7.57 (t, 2H, 2-NO 2 −Ar−H), 7.65−7.67 (d, 1H, diCl−Ar−H), 7.71−7.74 (d, 1H, diCl−Ar−H), 7.84 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−H), 2218 (C≡N), 1639 (C=O), 1355−1315 (NO 2 ), 774 (C−Cl); MS m/z (%): 425(M + ), 304 (25), 288 (100), 237 (15), 210 (12), 187 (5), 152 (7), 126 (13). Elemental Analysis for C 19 H 9 Cl 2 N 5 O 3 : Calculated: C, 53.54; H, 2.13; N, 16.43. Found: C, 53.20; H, 2.08; N, 16.26%.
6-Amino-1-(2,5-dichlorophenyl)-2-oxo-4-(p-tolyl)-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-6): MP: 284−286℃; 1 H-NMR (400MHz, DMSO- d 6 ) δ ppm: 2.05 (s, 3H, CH 3 ), 7.10−7.13 (d, 2H, CH 3 −Ar−H, J = 11.6 Hz), 7.42−7.45 (d, 2H, OCH 3 −Ar−H, J = 11.6 Hz), 7.68− 7.69 (d, 1H, diCl−Ar−H), 7.75−7.78 (d, 1H, diCl−Ar−H), 7.85 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 2870 (CH 3 ), 3194 (Ar−C−H), 2218 (C≡N), 1639 (C=O), 774 (C−Cl); MS m/z (%): 394 (M + ), 380 (10), 359 (95), 282 (5), 254 (8), 233 (9), 202 (12), 142 (18), 91 (13), 77 (27). Elemental Analysis forC 20 H 12 Cl 2 N 4 O: Calculated: C, 60.78; H, 3.06; N, 14.18. Found: C, 60.68; H, 3.00; N, 14.10%.
6-Amino-1-(2,5-dichlorophenyl)-4-(4-bromophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-7): MP: 298−300℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 7.53−7.56 (d, 2H, 4-Br−Ar−H, J = 11.6 Hz), 7.79−7.82 (d, 2H, 4-Br−Ar−H, J = 11.6 Hz), 7.68−7.69 (d, 1H, diCl−Ar−H), 7.75−7.78 (d, 1H, diCl−Ar−H), 7.85 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−H), 2218 (C≡N), 1639 (C=O), 774 (C−Cl), 642 (C−Br); MS m/z (%): 460 (M + ), 425 (95), 401 (23), 323 (18), 293 (10), 205 (12), 218 (8), 164 (9), 77 (65). Elemental Analysis for C 19 H 9 BrCl 2 N 4 O: Calculated: C, 49.60; H, 1.97; N, 12.18. Found: C, 49.37; H, 1.85; N, 12.07%.
6-Amino-1-(2,5-dichlorophenyl)-4-(3-bromophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-8): MP: 305−308℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 7.38−7.41 (m, 3H, 3-Cl−Ar−H), 7.49 (s, 1H, 3-Cl−Ar−H), 7.68−7.69 (d, 1H, diCl−Ar−H), 7.75−7.78 (d, 1H, diCl− Ar−H), 7.85 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−C−H), 2218 (C≡N), 1639 (C=O), 774 (C−Cl), 642 (C−Br); MS m/z (%): 460 (M + ), 425 (95), 401 (23), 323 (18), 293 (10), 205 (12), 218 (8), 164 (9), 77 (65). Elemental Analysis for C 19 H 9 BrCl 2 N 4 O: Calculated: C, 49.60; H, 1.97; N, 12.18. Found: C, 49.27; H, 1.90; N, 12.11%.
6-Amino-1-(2,5-dichlorophenyl)-4-(4-chlorophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-9): MP: 278−282℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 7.50−7.53 (d, 2H, 4-Cl−Ar−H, J = 11.6 Hz), 7.75−7.78 (d, 2H, 4-Cl−Ar−H, J = 11.6 Hz), 7.68−7.69 (d, 1H, diCl−Ar−H), 7.75−7.78 (d, 1H, diCl−Ar−H), 7.85 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−H), 2218 (C≡N), 1639 (C=O), 774 (C−Cl); MS m/z (%): 414 (M + ), 379 (90), 304 (21), 288 (25), 254 (5), 210 (15), 142 (8), 77 (29). Elemental Analysis for C 19 H 9 Cl 3 N 4 O: Calculated: C, 54.90; H, 2.18 N, 13.48. Found: C, 54.70; H, 2.10 N, 13.25%.
6-Amino-1-(2,5-dichlorophenyl)-4-(3-chlorophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-10): MP: 285−288℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 7.28−7.31 (m, 3H, 3-Cl−Ar−H), 7.45 (s, 1H, 3-Cl−Ar−H), 7.68−7.69 (d, 1H, diCl−Ar−H), 7.75−7.78 (d, 1H, diCl−Ar−H), 7.85 (s, 1H, diCl−Ar−H), 8.28 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3665 and 3522 (NH 2 ), 3194 (Ar−H), 2218 (C≡N), 1639 (C=O), 774 (C−Cl); MS m/z (%): 414 (M + ), 379 (90), 304 (21), 288 (25), 254 (5), 210 (15), 142 (8), 77 (29). Elemental Analysis for C 19 H 9 Cl 3 N 4 O: Calculated: C, 54.90; H, 2.18 N, 13.48. Found: C, 54.55; H, 2.08N, 13.14%.
6-Amino-1-(2,5-dimethylphenyl)-2-oxo-4-phenyl-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-11): MP: 283−285℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 7.55 (s, 5H, Ar−H), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.12−7.15 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.52−7.55 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.10 (s, 1H, diCH 3 −Ar−H), 7.90 (s, 2H, NH 2 ), IR (KBr, υ/cm −1 ): 3641 and 3447 (N−H), 3206 (Ar−H), 2870 (CH 3 ), 2215 (C≡N), 1631 (C=O), 774 (C− Cl); MS m/z (%): 340 (M + , 24), 325 (100), 309 (20), 164 (24), 107 (18), 103 (28), 91 (45), 77 (36). Elemental Analysis for C 21 H 16 N 4 O: Calculated: C, 74.10; H, 4.74; N, 16.46. Found: C, 74.06; H, 4.64; N, 16.56%.
6-Amino-1-(2,5-dimethylphenyl)-4-(4-methoxyphenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-12): MP: 255−260℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 3.85 (s, 3H, OCH 3 ), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.12−7.15 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.52−7.55 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.10 (s, 1H, diCH 3 −Ar−H), 7.90 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3651 and 3457 (N−H), 3206 (Ar−H), 2870 (CH 3 ), 2215 (C≡N), 1631 (C=O), 1172 (C−O−C symmetrical stretching OCH 3 group); MS m/z (%): 370(M + , 20), 355 (95), 324 (17), 205 (20), 164 (17), 107 (15), 103 (24), 91 (40), 77 (30). Elemental Analysis for C 22 H 18 N 4 O 2 : Calculated: C, 71.34; H, 4.90; N, 15.13.Found: C, 71.30; H, 4.87; N, 15.08%.
6-Amino-1-(2,5-dimethylphenyl)-4-(2-methoxyphenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-13): MP: 225−228℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 3.85 (s, 3H, OCH 3 ), 7.10−7.13 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.54−7.57 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.22−7.28 (t, 2H, 4- OCH 3 −Ar−H), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.10 (s, 1H, diCH 3 −Ar−H), 7.90 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3650 and 3440 (N−H), 3206 (C−H aromatic), 2870 (CH 3 ), 2215 (C≡N), 1631 (C=O), 1172 (C−O−C symmetrical stretching OCH 3 group); MS m/z (%): 370 (M + , 22), 355 (96), 324 (14), 205 (19), 164 (5), 107 (10), 103 (32), 91 (30), 77 (35). Elemental Analysis for C 22 H 18 N 4 O 2 : Calculated: C, 71.34; H, 4.90; N, 15.13. Found: C, 71.31; H, 4.85; N, 15.10%.
6-Amino-1-(2,5-dimethylphenyl)-4-(4-nitrophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-14): MP: 195−198℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 7.11 (s, 1H, diCH 3 −Ar− H), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.58−7.61 (d, 2H, 4Br−Ar−H, J = 11.2 Hz), 7.79−7.82 (d, 2H, 4Br−Ar−H, J = 11.6 Hz), 7.91 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3644 and 3446 (N−H), 3200 (C−H aromatic), 2855 (CH 3 ), 2250 (C≡N), 1631 (C=O), 1350−1310 (NO 2 ); MS m/z (%): 385 (M + , 31), 370 (100), 339 (28), 205 (15), 164 (8), 122 (30), 103 (30), 77 (30). Elemental Analysis for C 21 H 15 N 5 O 3 : Calculated: C, 65.45; H, 3.92; N, 18.17.Found: C, 65.40; H, 3.91; N, 18.15%.
6-Amino-1-(2,5-dimethylphenyl)-4-(2-nitrophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-15): MP: 228−230℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 1.90 (s, 3H, CH 3 ), 2.02 (s, 3H, CH 3 ), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.10 (s, 1H, diCH 3 −Ar−H), 7.90 (s, 2H, NH 2 ), 8.10−8.13 (d, 2H, 2-NO 2 −Ar−H, J = 11.6 Hz), 7.22−7.25 (d, 2H, 2-NO 2 −Ar−H, J = 11.6 Hz), 7.54−7.57 (t, 2H, 2-NO 2 −Ar−H); IR (KBr, υ/cm −1 ): 3351 and 3457 (N− H), 3206 (C−H aromatic), 2870 (CH 3 ), 2215 (C≡N), 1631 (C=O), 1355−1315 (NO 2 ); MS m/z (%): 385 (M + , 29), 370 (98), 339 (30), 205 (14), 164 (6), 122 (21), 91 (8), 77 (45). Elemental Analysis for C 21 H 15 N 5 O 3 : Calculated: C, 65.45; H, 3.92; N, 18.17. Found: C, 65.35; H, 3.88; N, 18.10%.
6-Amino-1-(2,5-dimethylphenyl)-2-oxo-4-(p-tolyl)-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-16): MP: 220−222℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 1.90 (s, 3H, CH 3 ), 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 3.85 (s, 3H, OCH 3 ), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.12−7.15 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.52− 7.55 (d, 2H, 4-OCH 3 −Ar−H, J = 11.6 Hz), 7.10 (s, 1H, diCH 3 −Ar−H), 7.90 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3650 and 3450 (N−H), 3205 (C−H aromatic), 2868 (CH 3 ), 2340 (C≡N), 1629 (C=O); MS m/z (%): 354 (M + , 36), 339 (92), 308 (26), 205 (13), 164 (11), 103 (22), 91 (10), 77 (42). Elemental Analysis for C 22 H 18 N 4 O: Calculated: C, 74.56; H, 5.12; N, 15.81. Found: C, 74.50; H, 5.11; N, 15.71%.
6-Amino-1-(2,5-dimethylphenyl)-4-(4-bromophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-17): MP: 275−279℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 7.11 (s, 1H, diCH 3 −Ar−H), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.53−7.56 (d, 2H, 4Br−Ar−H J = 11.2 Hz), 7.79−7.82 (d, 2H, 4Br−Ar−H, J = 11.6 Hz), 7.93 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3640 and 3438 (N−H), 3206 (C−H aromatic), 2870 (CH 3 ), 2215 (C≡N), 1631 (C=O), 642 (C−Br); MS m/z (%): 418 (M + , 61), 403 (100), 323 (18), 309 (10), 205 (12), 164 (14), 103 (32), 91 (20), 77 (65). Elemental Analysis for C 21 H 15 BrN 4 O: Calculated: C, 60.16; H, 3.61; N, 13.36. Found: C, 60.11; H, 3.51; N, 13.31%.
6-Amino-1-(2,5-dimethylphenyl)-4-(3-bromophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-18): MP: 290−292℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 7.11 (s, 1H, diCH 3 −Ar−H), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.42−7.55 (m, 4H, 3Br−Ar−H), 7.93 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3635 and 3420 (N−H), 3206 (C−H aromatic), 2872 (CH 3 ), 2215 (C≡N), 1631 (C=O), 642 (C−Br); MS m/z (%): 418 (M + , 57), 403 (100), 323 (20), 309 (10), 205 (9), 164 (14), 103 (30), 91 (18), 77 (65). Elemental Analysis for C 21 H 15 BrN 4 O: Calculated: C, 60.16; H, 3.61; N, 13.36. Found: C, 60.13; H, 3.57; N, 13.31%.
6-Amino-1-(2,5-dimethylphenyl)-4-(4-chlorophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-19): MP: 235−238℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 7.11 (s, 1H, diCH 3 −Ar−H), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.50−7.53 (d, 2H, 4Br−Ar−H, J = 11.2Hz), 7.77−7.80 (d, 2H, 4Br−Ar−H, J = 11.6Hz), 7.91 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3635 and 3440 (N−H), 3202 (C−H aromatic), 2870 (CH 3 ), 2211 (C≡N), 1641 (C=O), 772 (C−Cl); MS m/z (%): 374 (M + , 52), 359 (100), 276 (21), 309 (8), 205 (11), 164 (15), 103 (25), 91 (15), 77 (60). Elemental Analysis for C 21 H 15 ClN 4 O: Calculated: C, 67.29; H, 4.03; N, 14.95. Found: C, 67.25; H, 3.95; N, 14.89%.
6-Amino-1-(2,5-dimethylphenyl)-4-(3-chlorophenyl)-2-oxo-1,2-dihydro pyridine-3,5-dicarbonitrile (CP-20): MP: 258−260℃; 1 H-NMR (400 MHz, DMSO- d 6 ) δ ppm: 2.02 (s, 3H, CH 3 ), 2.32 (s, 3H, CH 3 ), 7.11 (s, 1H, diCH 3 −Ar−H), 7.25−7.35 (d, 2H, diCH 3 −Ar−H), 7.42−7.55 (m, 4H, 3Br−Ar−H), 7.93 (s, 2H, NH 2 ); IR (KBr, υ/cm −1 ): 3590 and 3457 (N−H), 3200 (C−H aromatic), 2860 (CH 3 ), 2210 (C≡N), 1621 (C=O), 774 (C−Cl); MS m/z (%): 374 (M + , 55), 359 (98), 276 (16), 309 (6), 205 (10), 164 (12), 103 (28), 91 (18), 77 (58). Elemental Analysis for C 21 H 15 ClN 4 O: Calculated: C, 67.29; H, 4.03; N, 14.95. Found: C, 67.25; H, 4.00; N, 14.92%.
- Antimicrobial Screening
The synthesized compound were tested for their antibacterial and antifungal activity (MIC) in vitro by broth dilution method 1921 with two Gram-positive bacteria Staphylococcus aureus ( S.a .) MTCC 96, Streptococcus pyogenes ( S.p .) MTCC 443, two Gram-negative bacteria Escherichia coli ( E.c .) MTCC 442, Pseudomonas aeruginosa ( P.a .) MTCC 441 and three fungal strains Candida albicans ( C.a .) MTCC 227, Aspergillus niger ( A.n .) MTCC 282, Aspergillus clavatus ( A.c .) MTCC 1323 taking ampicillin, chloramphenicol, ciprofloxacin, norfloxacin, nystatin, and griseofulvin as standard drugs.
Serial dilutions of the test compounds and reference drugs were prepared in Muellere-Hinton agar. Drugs (10 mg) were dissolved in dimethylsulfoxide (DMSO, 1 mL). Further progressive dilutions with melted Muellere-Hinton agar were performed to obtain the required concentrations of 1.56, 3.12, 6.25, 10, 12.5, 25, 50, 62.5, 100, 125, 250, 500 and 1000 μg mL −1 . The tubes were inoculated with 10 8 cfu mL −1 (colony forming unit mL −1 ) and incubated at 37 ℃ for 24 h. The MIC was the lowest concentration of the tested compound that yields no visible growth (turbidity) on the plate. To ensure that the solvent had no effect on the bacterial growth, a control was performed with the test medium supplemented with DMSO at the same dilutions as used in the experiments and it was observed that DMSO had no effect on the microorganisms in the concentrations studied.
RESULTS AND DISCUSSION
The compound 1 and 2 reacted in a solvent free condition to provide the starting materials ( 3 ) in good yields for the synthesis of desired product ( CP 1−20 ).
As shown in the reaction ( 2 ) the synthesis of the target molecules CP 1−20 was carried out. The compound 3 was reacted with the various substituted 4 and 5 compounds to give different target molecules. All the molecules have been synthesized under the conventional method using methanol as a solvent and pipyridine as a catalyst.
The physical data like molecular formula, molecular weight, melting point, and percentage of yield of all the synthesized target molecules are shown in 1 .
The purity of all the synthesized compound was checked by TLC (8:2:n-hexane:ethylacetate). The target molecules were conformed on the basis of 1 H-NMR, IR, Mass Spectrometry. The 1 H-NMR spectra showed the broad peak in between 7.5−8.0 ppm which showed the presence of an −NH 2 functional group. The aromatic ring protons and J values were found to be in accordance with substitution pattern on phenyl ring. The sharp band near 2250 cm −1 in IR spectra indicates the presence of −CN group. Systematic fragmentation pattern was observed in mass spectral analysis for all the synthesized compounds. Molecular ion peak was observed in agreement with molecular weight of respective compound. All the synthesized target molecules showed screening in vitro studies on the selected microorganism and fungal species. Among the tested compounds CP-1 , CP-2 , CP-7 and CP-15 exhibited more antimicrobial activity against gram positive and gram negative bacteria and CP-9 , CP-10 and CP-17 exhibited comparatively moderate anti fungal activity ( 2 ).
CONCLUSION
In summary we have developed a simple, one pot method for the preparation of a series of 6-amino-1-(2,5-disubstituted phenyl)-2-oxo-4-substituted phenyl-1,2-dihydropyridine-3,5-dicarbonitrile. All the synthesized compounds were characterized by FT-IR, 1 H-NMR, mass spectroscopy and elemental analysis. The compounds were subjected for different biological activities and all the synthesized compounds showed good to moderate antimicrobial activity, results of other activities are awaiting. Further efforts toward this end will be reported in due course.
Physical data of all the synthesized compounds
PPT Slide
Lager Image
Physical data of all the synthesized compounds
Minimal inhibitory concentration (MIC) of all synthesized compounds
PPT Slide
Lager Image
Minimal inhibitory concentration (MIC) of all synthesized compounds
Acknowledgements
Authors are thankful to KSKV Kachchh University and M M Science College to providing research support and facility. Authurs are also thankful to Dr V R Ram and Dr G A Baxi for their help in spectral analysis. And the publication cost of this paper was supported by the Korean Chemical Society.
References
Choi W. , Houpis I. N. , Charchil H. R. O. , Molina A. , Lynch J. E. , Volante R. P. , Reider P. J. , King A. O. 1995 Tetrahedron 36 4571 -    DOI : 10.1016/0040-4039(95)00850-C
Bhupathy M. , Conlon D. A. , Wells K. M. , Wells M. , Nolson J. R. , Reider P. J. , Rossen K. , Sager J. W. , Volante R. P. 1995 Cyanoacetanilides Intermediates in Heterocyclic Synthesis. Part 1: A Facile Synthesis of Polysubstituted and Condensed Pyridones J. Heterocyclic Chem. 32 1283 -    DOI : 10.1002/jhet.5570320431
Kappe O. C. , Kappe T. 1989 Synthesis of substituted 3-pyridine carbo nitriles with potential biological activity Monatshefte fur Chemie 120 1095 -    DOI : 10.1007/BF00809291
Saiki A. Y. C. , Shen L. L. , Chen C. M. , Baranowski J. , Lerner C. G. 1999 DNA Cleavage Activities of Staphylococcus aureus Gyrase and Topoisomerase IV Stimulated by Quinolones and 2-Pyridones Antimicrob. Agents Chemother 43 1574 -
Brickner S. 1997 Regio and Selective Synthesis of 4,6-Disubstituted-2-pyridones Chem. Ind. 131 -
Cheney I. W. , Yan S. , Appleby T. , Walker H. , Vo T. , Yao N. , Hamatake R. , Hong Z. , Wu J. Z. 2007 Bioorg. Med. Chem. Lett. 17 1679 -    DOI : 10.1016/j.bmcl.2006.12.086
Wendt M. D. 2007 Bioorg. Med. Chem. Lett. 17 3122 -    DOI : 10.1016/j.bmcl.2007.03.042
Li Q. , Mitscher L. A. , Shen L. L. 2000 The 2-Pyridone Antibacterial Agents: Bacterial Topoisomerase Inhibitors Med. Res. Rev. 20 231 -    DOI : 10.1002/1098-1128(200007)20:4<231::AID-MED1>3.0.CO;2-N
Gupta, A K. , Plott T. 2004 Ciclopirox: A Broad-Spectrum Antifungal with Antibacterial and Anti-inflammatory Properties Int. J. Dermatol. 43 3 -    DOI : 10.1111/j.1461-1244.2004.02380.x
Collins I. 2002 3-Heteroaryl-2-pyridones: Benzodiazepine Site Ligands with Functional Selectivity for α2\α3-Subtypes of Human GABAA Receptor-Ion Channels J. Med. Chem. 45 1887 -    DOI : 10.1021/jm0110789
Robert N. , Verrier C. , Hoarau C. , Celanire S. 2008 Solid-phase Synthesis of 3-Hydroxy-2-methylenealkanenitriles Using Polymer-Supported α-Selenopropionitrile ARKIVOC 7 92 -
Sollogoub M. , Fox K. R. , Powers V. E. C. , Brown T. 2002 First Synthesis of 1-Deazacytidine, the C-nucleoside Analogue of Cytidine Tetrahedron Lett 43 3121 -    DOI : 10.1016/S0040-4039(02)00481-1
Parsons S. , Winpenny R. E. P. 1997 Structural Chemistry of Pyridonate Complexes of Late 3d-Metals Acc. Chem. Res. 30 89 -    DOI : 10.1021/ar960162t
Murray T. , Zimmerman S. 1995 7-Amido-1,8-naphthyridines as Hydrogen Bonding Units for the Complexation of Guanine Derivatives: The Role of 2-Alkoxyl Groups in Decreasing Binding Affinity Tetrahedron Lett 36 7627 -    DOI : 10.1016/0040-4039(95)01586-7
Werbitzky O. , Studer P. 2008 Process for the Production of 2-Chloro-5-chloromethyl-pyridine. 6,022,974 U.S. Patent
Murata T. , Shimizu K. , Narita M. , Manganiello V. , Tagawa T. 2000 Characterization of Phosphodiesterase 3 in Human Malignant Melanoma Cell Line Anticancer Res 22 3171 -
Ahmed Ali F. , Samir B. , Ramy R. , Hassan Ali E. 2008 Cyanoacetamide Derivatives as Synthons in Heterocyclic Synthesis Turk. J. Chem. 32 259 -
1997 Method for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically Approved Standard, Document M 100-S7 S100 - S157
Isenberg D. H. 1998 Essential Procedure for Clinical Microbiology American Society for Microbiology Washington
Zgoda J. R. , Porter J. R. 2001 Pharm. Biol. 39 221 - 225    DOI : 10.1076/phbi.39.3.221.5934