Advanced
Preparation of Carbon Fiber from Melt Spinnable PAN Co-polymer
Preparation of Carbon Fiber from Melt Spinnable PAN Co-polymer
Journal of the Korean Chemical Society. 2013. Apr, 57(2): 289-294
Copyright © 2013, Korea Chemical Society
  • Received : December 12, 2012
  • Accepted : January 17, 2013
  • Published : April 20, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Hyang Hoon Chae
Bo-Hye Kim
Division of Science Education, Daegu University, Gyeongbuk 712-714, Korea.
Sung Ho Lee
Polymer Hybrids Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Korea
Kap Seung Yang
Department of Polymer & Fiber System Engineering, Chonnam National University, Gwangju 500-757, Korea.

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
EXPERIMENTAL
- Materials and Characterizations
The monomers, acrylonitrile (AN), methyl acrylate (MA), itaconic acid (IA), initiator AIBN (2,2’-azo-bis-isobutyronitrile) were obtained from Aldrich Co. The dimetylsulfoxide (DMSO) purchased from Yakuri Pure Chemical was used as solvent in this reaction. AN and MA were washed with aqueous NaCl (to remove inhibitor), washed twice with distilled water, and distilled at reduced pressure before use. Samples for differential scanning calorimeter (DSC) experiments were heated to 500 ℃ under nitrogen atmosphere at a heating rate of 10 oC/min. Thermogravimetric analysis (TGA) was performed using a Shimadzu TGA 50 (Shimadzu, Inc.). The samples were heated to 800 ℃ in nitrogen in an electric furnace at a rate of 10 ℃/min. Viscosity measurements were performed at 25 ℃ using a BROOKFIELD viscometer (LVDVII+). Surface layer morphologies were analyzed using a scanning electron microscope (SEM) with Energy-dispersive X-ray (EDX) spectroscopy model Hitachi, S-4700. As-spun and stabilized fibers were sputter-coated with a platinum layer before being subjected to a SEM analysis. The surface functionalities of the copolymer were examined by Fourier transforms infrared spectroscopy (FT-IR, Nicolet 200 instrument). All the samples were analyzed using the KBr pellet technique and scanned in the range from 4000 to 400 cm −1 . The yield of the copolymer was determined by the weight % of copolymer on the basis of the total amount of monomer used. Microwave irradiation of the samples was studied by microwave oven (KR-A202B).
- Synthesis of PAN Copolymer
Monomer AN, MA, IA put together in a given weight fraction in DMSO solvent in cover tight Teflon bottle, and then the sample was polymerized under microwave irradiation of 100Watt (KR-A202B, Dae Woo, Korea) for various times. After cooling down to room temperature, the polymers washed with methanol until no remaining of solvent and unreacted monomers and finally dried it under vacuum at 70 ℃ for 24h. The copolymer produced from the monomer composition of 90/10(AN/MA) in the presence of 0.1 wt% initiator (AIBN) in DMSO solvent (ratio of total monomer and solvent is 1:2) was identified as AN90MA10(0.1)200%.
- Carbon Fiber Preparation
The PAN copolymer was spun into fiber through the using a melt spinning apparatus at melting temperature (DAQSTATION DX1000, YOKOGAWA, Tokyo, Japan). PAN copolymer were heated up to 190 ℃ (5 ℃/min) in nitrogen atmosphere and hold for 30 min. Fibers were initially spun through a round single-hole spinneret having 0.5 mm diameter, and then collected on a aluminum drum located down 52 cm from the spinneret at with average speed at 50 mmin -1 . In addition, the melt spun PAN copolymer fibers were dipped in 3 wt% KMnO 4 aqueous solution for 4 hours, which is followed by washing with distilled water and dried at room temperature. It was additionally heated up to 280 ℃ in a tubular furnace under nitrogen atmosphere and carbonized at 800 ℃ in nitrogen atmosphere. The overall process of carbon fibers from PAN copolymer is presented in . 9 .
PPT Slide
Lager Image
Schematic of preparation process of carbon fiber
Acknowledgements
This study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.
References
Donnet J. B. , Bansal R. C. 1984 Carbon Fibers Marcel Dekker
Fitzer E. 1985 Carbon Fibers and Their Composites Springer-Verlag
Cato A. D. , Edie D. D. 2003 Carbon 41 1411 -    DOI : 10.1016/S0008-6223(03)00050-2
Bahl O. P. , Manocha L. M. 1974 Carbon 12 417 -    DOI : 10.1016/0008-6223(74)90007-4
Johnson D. J. , Tyson C. N. 1969 J. Phys. D: Appl. Phys. 2 787 -    DOI : 10.1088/0022-3727/2/6/303
Donnet J. B. , Bansal R. C. 1990 Carbon Fibers 2nd ed. Marcel Dekker
Jones R. M. 1975 Mechanics of Composite Materials McGraw-Hill
Baker F. S. , Gallego N. C. , Naskar A. K. , Baker D. A. 2007 Low-Cost Carbon Fibers Oak Ridge National Laboratory
Daumit G. P. , Ko Y. S. , Slater C. R. , Venner J. G. , Young C. C. 1990 4935180 U.S. Patent
Furuta S. , Katsuki H. , Komarneni S. 2001 J. Porous Materials 8 43 -    DOI : 10.1023/A:1026522401784
Uguina M. A. , Serrano D. P. , Sanz R. , Castillo E. Proc. 12th Intern.: Zeolite Conference
Perreux L. , Loupy A. 2001 Tetrahedron 57 9199 -    DOI : 10.1016/S0040-4020(01)00905-X
Lidström P. , Tirney J. , Wathey B. , Westman J. 2001 Tetrahedron 57 9225 -    DOI : 10.1016/S0040-4020(01)00906-1
Park J. H. , Park S. H. , Jhung S. H. 2009 J. Korean Chem. Soc. 53 553 -    DOI : 10.5012/jkcs.2009.53.5.553
Choi K. Y. , Conner W. C. 2007 J. Korean Ind.: Eng. Chem. 18 344 -
Kim J. H. , Heo J. , Kang B. M. , Son D. H. , Lee G. D. , Hong S. S. , Park S. S. 2009 J. Korean Ind.: Eng. Chem. 20 154 -
Barbier-Baudry D. , Brachais L. , Cretu A. , Gattin R. , Loupy A. , Stuerga D. 2003 Environ. Chem. Lett. 1 19 -    DOI : 10.1007/s10311-002-0005-4
Kyotani T. , Nakazaki S. , Xu W. H. , Tomita A. 2001 Carbon 39 782 -    DOI : 10.1016/S0008-6223(01)00013-6
Mawhinney D. B. , Naumenko V. , Kuznetsova A. 2000 Chem. Phys. Lett. 324 213 -    DOI : 10.1016/S0009-2614(00)00526-1
Mawhinney D. B. , Naumenko V. , Kuznetsova A. , Yates Jr. , John T. , Liu J. , Smalley R. E. 2000 J. Am. Chem. Soc. 122 2383 -    DOI : 10.1021/ja994094s
Hernadi K. , Siska A. , Thien-Nga L. , Forro L. , Kiricsi I. 2001 Solid State Ionics 141-142 203 -    DOI : 10.1016/S0167-2738(01)00789-5
Hwang K. C. 1995 J. Chem. Soc.: Chem. Comm. 2 173 -
Gupta A. , Harrison I. R. 1996 Carbon 34 1427 -    DOI : 10.1016/S0008-6223(96)00094-2
Esrafilzadeh D. , Morshed M. , Tavanai H. 2009 Synth. Met. 159 267 -    DOI : 10.1016/j.synthmet.2008.09.014
Maradura S. P. , Kim C. H. , Kim S. Y. , Kim B. H. , Kim W. C. , Yang K. S. 2012 Synth. Met. 162 453 -    DOI : 10.1016/j.synthmet.2012.01.017
Fitzer E. , Muller D. J. 1975 Carbon 13 63 -    DOI : 10.1016/0008-6223(75)90259-6
Bhat G. S. , Abhiraman A. S. , Cook F. L. , Peebles Jr. L. H. 1993 J. Appl. Polym. Sci. 49 2207 -    DOI : 10.1002/app.1993.070491217
Shimoda K. , Park J.-S. , Hinoki T. , Kohyama A. 2007 Appl. Surf. Sci. 253 9450 -    DOI : 10.1016/j.apsusc.2007.06.023
Mathur R. B. , Mittal J. , Bahl O. P. 1993 J. Appl. Polym. Sci. 49 469 -    DOI : 10.1002/app.1993.070490311
Wangxi Z. , Jie L. 2006 Journal of Wuhan University of Technology - Mater. Sci. Ed. 21 44 -
Kubo S. , Uraki Y. , Sano Y. 1998 Carbon 36 1119 -    DOI : 10.1016/S0008-6223(98)00086-4