Advanced
Microwave-acceleration of Carboxamides Formation Using Water Soluble Condensing Agent DMT-MM or DCC
Microwave-acceleration of Carboxamides Formation Using Water Soluble Condensing Agent DMT-MM or DCC
Journal of the Korean Chemical Society. 2012. Oct, 56(5): 658-660
Copyright © 2012, The Korean Chemical Society
  • Received : May 07, 2012
  • Accepted : July 20, 2012
  • Published : October 20, 2012
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Nam Sook Cho
nsmcho@cnu.ac.kr
Hye Jin Jeon
Dong Uk Heo

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
EXPERIMENTAL
All 1 H NMR spectra were recorded on a Jeol 400 MHz Spectrometer and chemical shifts were recorded to tetramethylsilane (TMS) as an internal standard. Microwaveassistant reactions were performed with an initiator instrument (EXP EU, Biotage, 400W, 2450 MHz) Each microwave irradiation reaction was carried out in a 5 mm thickness Biotage vial sealed with a crimp cap. Reaction temperature were measured using infrared sensors on the outer surface of the traction vil. Products were purified by flash chromatography on 200-400 mesh ASTM 60 silica gel.
General method of formation of amides from substituted benzoic acid and 2-phenyethylamine or piperidine in presence of DMT-MM under microwave irradiation Acid (1.5 mmol), 2-phenylethylamine (1.65 mmol, 200 mg), DMT-MM (1.65 mmol, 457 mg) in MeOH (15 mL) were heated in microwave oven for 25 min. The end of reaction was checked with TLC. The solvent was removed under vacuum to give a crude product. The product was purified by column chromatography.
- General Method of Formation of Amide From Substituted Benzoic Acid and 2-phenyethylamine or Piperidine in Presence of DMT-MM Under Thermal Heating
Acid (1.5 mmol), 2-phenylethylamine or piperidine (1.65 mmol), DMT-MM (1.65 mmol, 457 mg) in MeOH (15 mL) were refluxed for 3.5 hr. The end of reaction was checked with TLC. The solvent was removed under vacuum to give a crude product. The product was purified by column chromatography.
- N-Phenethylbenzamide
Column chromatography: eluent, hexane : EA = 1 : 1, R f 0.55, mp 112.4 ℃ (113-114 ℃ lit. 15 ) yield = 88.9% (thermal reaction, reaction time 3.5 hr), yield = 99.0% (microwave irradiation reaction, reaction time 25 min.). 1 H NMR: 7.70 (10(CH), m, 10H), 6.14 (NH, s, 1H), 3.73 (NCH 2 , t, 2H), 2.94 (NCH 2 C H 2 , t, 2H)
- N-Phenethyl-4-nitrobenzamid
Column chromatography: eluent, hexane : EA = 3 : 2, R f 0.59, mp 149 ℃ (149.5-150.5 ℃ lit. 15 ) yield = 81.5% (thermal reaction, reaction time, 3.0 hr), yield = 92.6% (microwave irradiation reaction, reaction time 25min.). 1 H NMR: 8.27, 8.25, 7.84, 7.82 (4(CH), dd, 4H), 7.33 (C 6 H 5 , m, 5H), 6.13 (NH, s, 1H), 3.76 (NCH 2 , t, 2H), 2.96 (NCH 2 C H 2 , t, 2H).
- N-phenethyl-4-methoxybenzamide
Column chromatography: eluent, hexane : EA = 3 : 2, R f 0.64, mp 118 ℃ (117.5-118.5℃ lit. 15 ) yield = 70.8% (thermal reaction, reaction time, 3.0 hr), yield = 91.7% (microwave irradiation reaction, reaction time 25 min.). 1 H NMR: 8.27, 8.25, 7.84, 7.82 (4(CH), dd, 4H), 7.33 (C 6 H 5 , m, 5H), 6.13 (NH, s, 1H), 3.76 (NCH 2 , t, 2H), 2.96 (NCH 2 C H 2 , t, 2H)
- N-Phenethyl-3-methoxybenzamide
Column chromatography: eluent, hexane : EA = 3 : 2, R f 0.66, mp 112-113 ℃ (113-114 ℃ lit. 19 ) yield = 72% (thermal reaction, reaction time, 3.0 hr), yield = 92.0% (microwave irradiation reaction, reaction time 25 min.). 1 H NMR: 7.5 (9(CH), m, 9H), 6.10(NH, s, 1H), 3.82 (OCH 3 , s, 3H), 3.66 NCH 2 , t, 2H) 2.88 (NCH 2 C H 2 , t, 2H).
- Phenyl-1-piperadinymethanone
Column chromatography: eluent, hexane : EA = 2 : 1, R f 0.30, yield = 79.3% (thermal reaction, reaction time, 11.5 hr), yield = 91.7% (microwave irradiation reaction, reaction time 30 min.). 1 H NMR: 7.34 (5(CH), m, 5H), 3.66 (NCH 2 , m, 2H), 3.29(NCH 2 , m, 2H), 1.62 (N(CH 2 ) 2 (C H 2 ) 2 , m, 4H), 1.46 ((CH 2 ) 2 C H 2 , m, 2H).
- 4-Nitrophenyl-1-piperidinylmethanone
Column chromatography: eluent, hexane : EA = 2 : 1, R f 0.23, yield = 59.6% (thermal reaction, reaction time, 24 hr), yield = 75.8% (microwave irradiation reaction, reaction time 30 min.). 1 H NMR: 8.27, 8.20, 7.57, 7.55 (4(CH), dd, 4H), 7.27 (NH, s, 1H), 3.73 (NCH 2 , m, 2H), 3.29 (NCH 2 , m, 2H), 1.70 (N(CH 2 ) 2 (C H 2 ) 2 , m, 4H), 1.53 ((CH 2 ) 2 C H 2 , m, 2H).
- General Method of Formation of Amides from Substituted Benzoic Acid and Piperidine in in Presence of DCC Under Microwave Irradiation
Acid (2.5 mmol), piperidine (3 mmol), DCC (3.75 mmol) and pyridine (0.25 mmol) in dry THF (5 mL) were heated in a microwave oven at 120 ℃ (power 60 W) for 25 min. The end of reaction was checked with TLC. The solvent was removed under vacuum to give a crude product. The product was purified by column chromatography.
- Phenyl-1-piperadinymethanone
Column chromatography: eluent, hexane : EA = 2 : 1, R f 0.30, yield = 52.8% (thermal reaction, reaction time, 10 hr), yield = 63% (microwave irradiation reaction, reaction time 25 min.). 1 H NMR: 7.34 (5(CH), m, 5H), 3.66 (NCH 2 , m, 2H), 3.29(NCH 2 , m, 2H), 1.62 (N(CH 2 ) 2 (C H 2 ) 2 , m, 4H), 1.46 ((CH 2 ) 2 C H 2 , m, 2H).
- 4-Methoxybenzonyl-1-piperadinylmethanone
Column chromatography: eluent, hexane : EA = 2 : 1, R f 0.23, yield = 50.4% (thermal reaction, reaction time 12 hr), yield = 60% (microwave irradiation reaction, reaction time 25 min.) 1 HNMR: 7.37, 7.35, 6.91, 6.89 (4(CH), dd, 4H), 3.82 (OCH 3 , s, 3H), 3.45 (N(CH 2 ) 2 , m, 4H), 1.67 (N(CH 2 ) 2 (C H 2 ) 2 , m, 4H), 1.59 ((CH 2 ) 2 C H 2 , m, 2H).
References
Glynn D. , Berier D. , Woodward S. 2008 Teterahedron Lett. 49 5687 -    DOI : 10.1016/j.tetlet.2008.07.090
Montalbetti C. A. G. N. , Falque V. 2005 Tetrahedron 61 1082 -    DOI : 10.1016/j.tet.2005.08.031
Kishikawa K , Yamamoto M. , Kohmoto S. , Yamada K. 1989 Synth. Commun. 993 -    DOI : 10.1080/00397918908051020
Munakami M. , Hayashi M. , Tamura N. , Hishino Y. , Ito Y. 1996 Teterahedron Lett. 37 7541 -    DOI : 10.1016/0040-4039(96)01712-1
Chandrasekhar S. , Mohamede T. , Uma G. 1997 Teterahedron Lett. 38 8089 -    DOI : 10.1016/S0040-4039(97)10116-2
Kamninski Z. J. , Paneth P. , Rudzinski J. 1998 J. Org. Chem. 63 4248 -    DOI : 10.1021/jo972020y
Bailen M. , Chichilla R. , Dodsworth D. J. , Najera C. 1999 J. Org. Chem. 64 8936 -    DOI : 10.1021/jo990660q
van Leeuwen S. H. , Quaedflieg P. J. L. M. , Broxterman Q. B. , Liskamp R. M. 2002 J. Teterahedron Lett. 43 9203 -    DOI : 10.1016/S0040-4039(02)02275-X
Quelever G. , Burlet S. , Garino C. , Pietrancosa N. , Laras Y. , Kraus J.-L. 2004 J. Comb. Chem. 6 695 -    DOI : 10.1021/cc034069p
Wei Z. , Yimin L. 2006 QSAR & Comb. Sci. 25 724 -    DOI : 10.1002/qsar.200640041
Valeur E. , Bradley M. 2007 Tetrahedron 63 8855 -    DOI : 10.1016/j.tet.2007.06.019
De Wael K. , Buschop H. , De Smet L. , Adriaens A. 2008 Talanta 76 309 -    DOI : 10.1016/j.talanta.2008.02.040
Kunishima M. , Kawachi C. , Morita J. , Terao K. , Iwasaki F. , Tani S. 1999 Tetrahedron 55 13159 -    DOI : 10.1016/S0040-4020(99)00809-1
Kunishima M. , Kawachi C. , Iwasaki F. , Terao K. , Tani S. 1999 Tetrahedron Lett. 40 5327 -    DOI : 10.1016/S0040-4039(99)00968-5
Kunishima M. , Kawachi C. , Hioki K. , Terao K. , Tani S. 2001 Tetrahedron 57 1551 -    DOI : 10.1016/S0040-4020(00)01137-6
Caddick S. 1995 Tetrahedron 51 10403 -    DOI : 10.1016/0040-4020(95)00662-R
Lidstrom P. , Tierney J. , Wathey B. , Westman J. 2001 Tetrahedron 57 9225 -    DOI : 10.1016/S0040-4020(01)00906-1
Kappe C. O. 2004 Angew. Chem., Int. Ed. 43 6250 -    DOI : 10.1002/anie.200400655
Kunishima M. , Kawachi C. , Morita J. , Terao K. , Iwasaki F. , Tani S. 1999 Tetrahedron 55 13159 -    DOI : 10.1016/S0040-4020(99)00809-1