Advanced
Single Strands versus Ladders: Construction of Skeletal Structure via Coordinating Ability of Anions
Single Strands versus Ladders: Construction of Skeletal Structure via Coordinating Ability of Anions
Journal of the Korean Chemical Society. 2011. Oct, 55(5): 887-891
Copyright © 2011, The Korean Chemical Society
  • Received : June 28, 2011
  • Accepted : August 10, 2011
  • Published : October 20, 2011
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Eun Ji Kim
Jungmin Ahn
Tae Hwan Noh
Ok-Sang Jung
oksjung@pusan.ac.kr

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
EXPERIMENTAL
All chemicals including 1,5-dihydroxynaphthalene and AgX (X - = NO 2 - , NO 3 - and ClO 4 - ) were purchased from Aldrich, and used without further purification. Infrared spectra were obtained on a Nicolet 380 FTIR spectrometer with samples prepared as KBr pellets. 1 H and 13 C NMR spectra were recorded on a Varian Mercury Plus 300 operating at 300.00 MHz and 75.00 MHz, espectively. Elemental microanalyses (C, H, N) were performed on solid samples by the Pusan center, KBSI, using a Vario-EL III.
- 1,5-Bis(isonicotinoyloxy)naphthalene (L)
Triethylamine (10.56 mmol, 1.47 mL) was added to a stirred mixture of 1,5-dihydroxynaphthalene (2 mmol, 0.320 g) and isonicotinoyl chloride hydrochloride (4.8 mmol, 0.854 g) in chloroform (120 mL) at room temperature. The reaction mixture was refluxed for 24 h. The solution was filtered, and then the filtrate was washed with 0.5 N NaOH and water several times. The chloroform layer was dried using magnesium sulfate and filtered. Evaporation of the chloroform gave a deep red product. The product was finally recrystallized in a solvent pairof chloroform and n -hexane to give L asyellowcrystals in a 79% yield. IR (KBr): 1743(s), 1600(m), 1407(s), 1234(s), 1097(s), 792(m) cm -1 ; 1 H NMR (CDCl 3 ): δ8.95 (d, J = 4.2 Hz, 4H),8.14 (d, J = 4.2 Hz, 4H), 7.88 (d, J = 8.7Hz, 2H), 7.59 (d, J = 7.5Hz, 2H), 7.45 (d, J = 7.2 Hz, 2H); 13 C NMR (CDCl 3 ): δ179.86, 151.19, 146.70, 128.19, 126.55, 123.39, 119.75, 119.17, 100.09; Anal . Calcd. for C 22 H 14 N 2 O 4 : C, 71.35; H, 3.81; N, 7.56. Found: C, 71.34; H, 3.81; N, 7.56.
- Synthesis of [Ag2(NO2)2(L)]n
An ethanol solution (5 mL) of AgNO 2 (0.01 mmol, 0.0015 g) was layered onto a tetrahydrofuran solution (5 mL) of L (0.005 mmol, 0.0019 g). After 7 days, yellow crystals suitable for X-ray crystallography were obtained in a 57% yield (0.0020 g) based on Ag(I) salt. IR (KBr): 1743(s), 1558(m), 1407(s), 1270(s, μ(NO 2 - )), 1234(s), 1097(m), 792(m) cm -1 ; Anal . Calcd. for C 23 H 17 N 4 O 8 Ag 2 : C, 39.85; H, 2.47; N, 8.08. Found: C, 39.82; H, 2.50; N, 8.09.
- Synthesis of [Ag(L)]n(NO3)n
A methanol solution (5 mL) of AgNO 3 (0.01 mmol, 0.0017 g) was layered onto a dichloromethane solution (5 mL) of L (0.01 mmol, 0.0037 g). After 4 days, yellow crystals suitable for X-ray crystallography were obtained in a 77% yield (0.0042 g) based on Ag(I) salt. IR (KBr): 1745(s), 1600(m), 1403(m), 1384(s, μ(NO 3 - )), 1234(s), 1099(s), 792(m)cm -1 ; Anal . Calcd. for C 22 H 14 N 3 O 7 Ag: C, 48.91; H, 2.61; N, 7.78. Found: C, 48.91; H, 2.63; N, 7.79.
- Synthesis of [Ag(L)]n(CLO4)n·nH2O
A methanol solution (5 mL) of AgClO 4 (0.01 mmol, 0.002 g) was layered onto a tetrahydrofuran solution (5 mL) of L (0.01 mmol, 0.0037 g). After 4 days, yellow crystals suitable for X-ray crystallography were obtained in a 78% yield (0.0045 g) based on Ag(I) salt. IR (KBr): 1743(s), 1600(m), 1407(m), 1234(s), 1097(s), 1087(s, μ(ClO 4 - )), 792(m) cm -1 ; Anal. Calcd. for C 22 H 16 N 2 O 9 ClAg: C, 44.36; H, 2.71; N,4.70. Found: C, 44.33; H, 7.76; N, 4.68.
- Crystal Structure Determinations
X-ray data were collected on a Bruker SMART automatic diffractometer with a graphite-monochromated Mo Kα (λ=0.71073 Å) and a CCD detector at ambient temperature. Thirty six frames of two dimensional diffraction images were collected and processed to obtain the cell parameters and orientation matrix. The data were corrected for Lorentz and polarization effects. Absorption effects were corrected by the multi-scan method. The structures were solved by the direct method (SHELXS 97) and refined by full-matrix least squares techniques (SHELXL 97). 31 The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated positions and refined only for the isotropic thermal factors. Crystallographic data for the structures reported here have been deposited with the Cambridge Crystallographic Data Centre (CCDC-831384 for [Ag 2 (NO 2 ) 2 ( L )] n , 831385 for [Ag( L )] n (NO 3 ) n , and 831386 for [Ag( L )] n (ClO 4 ) n · n H 2 O). The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/perl/catreq/catreq.cgi (or from the CCDC, 12 Union Road,Cambridge CB2 1EZ, UK; fax: +44 1233336033; e-mail: deposit@ccdc.cam.ac.uk ).
Acknowledgements
This research was supported by a grant from NRF-2008-313-C00426 in Korea.
References
Stang P. J. , Olenyuk B. 1997 Acc. Chem. Res. 30 502 -    DOI : 10.1021/ar9602011
Jones C. J. 1998 Chem. Soc. Rev. 27 289 -    DOI : 10.1039/a827289z
Slone R. V. , Yoon D. I. , Calhoun R. M. , Hupp J. T. 1995 J. Am. Chem. Soc. 117 11813 -    DOI : 10.1021/ja00152a027
Gale P. A. 2001 Coord. Chem. Rev. 213 79 -    DOI : 10.1016/S0010-8545(00)00364-7
Fujita M. 1998 Chem. Soc. Rev. 27 417 -    DOI : 10.1039/a827417z
Jung O.-S. , Kim Y. J. , Lee Y.-A. , Park J. K. , Chae H. K. 2000 J. Am. Chem. Soc. 122 9921 -    DOI : 10.1021/ja001618b
Blake A. J. , Champness N. R. , Chung S. S. M. , Li W.-S. , Schröder M. 1997 Chem. Commun. 1675 -    DOI : 10.1039/a702972a
Ohba M. , Fukita N. , Okawa H. 1997 J. Chem. Soc., Dalton Trans. 1733 -    DOI : 10.1039/a607795a
Fujita M. , Kwon Y. J. , Washizu S. , Ogura K. 1994 J. Am. Chem. Soc. 116 1151 -    DOI : 10.1021/ja00082a055
Fujita M. , Kwon Y. J. , Sasaki O. , Yamaguchi K. , Ogura K. 1995 J. Am. Chem. Soc. 117 7287 -    DOI : 10.1021/ja00132a046
Gardner G. B. , Venkataraman D. , Moore J. S. , Lee S. 1995 Nature 374 792 -    DOI : 10.1038/374792a0
MacGillivray L. R. , Subramanian S. , Zaworotko M. J. 1994 Chem. Soc. Rev. 23 283 -    DOI : 10.1039/cs9942300283
Batten S. R. , Jensen P. , Monbaraki B. , Murry K. S. , Robson R. 1998 Chem. Commun. 439 -    DOI : 10.1039/a707264c
Manson J. L. , Incarvito C. D. , Rheingold A. L. , Miller J. S. 1998 J. Chem. Soc., Dalton Trans. 3705 -    DOI : 10.1039/a807788f
Beer P. D. , Gale P. A. 2001 Angew. Chem., Int. Ed. 40 486 -    DOI : 10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P
Beer P. B. , Smith D. K. 1997 Prog. Inorg. Chem. 46 1 -
Schmidtchen F. P. , Berger M. 1997 Chem. Rev. 97 1609 -    DOI : 10.1021/cr9603845
Lapointe R. E. , Roof G. R. , Abboud K. A. , Klosin J. 2000 J. Am. Chem. Soc. 122 9560 -    DOI : 10.1021/ja002664e
Mason S. , Cliford T. , Seib L. , Kuczera K. , Bowman-James K. 1998 J. Am. Chem. Soc. 120 8899 -    DOI : 10.1021/ja9811593
Seppelt K. 1993 Angew. Chem., Int. Ed. Engl. 32 1025 -    DOI : 10.1002/anie.199310251
Brown R. A. , Pollet P. , McKoon E. , Eckert C. G. , Liotta C. L. , Jessop P. G. 2001 J. Am. Chem. Soc. 123 1254 -    DOI : 10.1021/ja005718t
Withersby M. A. , Blake A. J. , Champness N. R. , Hubberstey P. , Li W.-S. , Schröder M. 1997 Angew. Chem., Int. Ed. Engl. 36 2327 -    DOI : 10.1002/anie.199723271
Wu H. P. , Janiak C. , Rheinwald G. , Lang H. 1999 J. Chem. Soc., Dalton Trans. 183 -    DOI : 10.1039/a807450j
Janiak C. , Uehlin L. , Wu H.-P. , Klufers P. , Piotrowski H. , Scharmann T. G. 1999 J. Chem. Soc., Dalton Trans. 3121 -    DOI : 10.1039/a904829d
Jung O.-S. , Kim Y. J. , Park J. Y. , Choi S. N. 2003 J. Mol. Struct. 657 207 -    DOI : 10.1016/S0022-2860(03)00369-7
Lee J. W. , Kim E. A. , Kim Y. J. , Lee Y.-A. , Pak Y. , Jung O.-S. 2005 Inorg. Chem. 44 3151 -    DOI : 10.1021/ic048537r
Jung O.-S. , Kim Y. J. , Lee Y.-A. , Yoo K. H. 2002 Chem. Lett. 500 -    DOI : 10.1246/cl.2002.500
Jung O.-S. , Kim Y. J. , Lee Y.-A. , Park K.-M. , Lee S. S. 2003 Inorg. Chem. 42 844 -    DOI : 10.1021/ic025935q
Huheey J. E. 1978 Inorganic Chemistry, Principles of Structure andReactivity 2nd ed. Harper & Row New York 230 -
Lee Y.-A. , Jung O.-S. 2001 Angew. Chem., Int. Ed. 40 3868 -    DOI : 10.1002/1521-3773(20011015)40:20<3868::AID-ANIE3868>3.0.CO;2-O
Sheldrick G. M. 1997 SHELXS-97: A Program for Structure Determination University of Göttingen Germany