Advanced
Synthesis and Antibacterial Activities of New S-glycosides Bearing 1,2,4-Triazole
Synthesis and Antibacterial Activities of New S-glycosides Bearing 1,2,4-Triazole
Journal of the Korean Chemical Society. 2010. Dec, 54(6): 731-736
Copyright © 2010, The Korean Chemical Society
  • Received : May 04, 2010
  • Accepted : June 24, 2010
  • Published : December 20, 2010
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Shu-jun Chao
Ming-jiang Geng
Ying-ling Wang
chaoshujun1979@sina.com

Abstract
Several new 5-aryl-3-(β-D-glucopyranosylthio)-1,2,4-triazoles have been synthesized. The structures of these new compounds were confirmed by 1 H NMR, 13 C NMR and elemental analyses.The antibacterial activities of the compounds were also evaluated.
Keywords
INTRODUCTION
1,2,4-Triazoles are very important organic compounds with wide-ranging biological activities. These compounds are reported to possess significant antiviral, 1 antibacterial, 2 antifungal, 3 antiasthmatic, 4 antidepressant 5 and anti-inflammatory 6 - 7 activities.
Glycosides have extensively existed in the animals and plants and taken on an important biological function. 8 Many active ingredients in natural drugs and Chinese traditional drugs belong to glycosides. Significant antibacterial and anticaner activities of glycosides have attracted many workers to attempt to improve the biological activity of these compounds by the glycosylation in order to increase their solubility in water and guidance quality. 9 - 11
Since the recognized biological properties of ribavirin, 12 1-β-D-ribofuranosyl-1,2,4-triazole-3-caroboxamide, the synthesis of N-glycosides and C-glycosides as well as their acyclic analogues possessing a 1,2,4-triazole moiety has attracted many workers 13 - 14 in this field to try to enhance the biological activity of these compounds. During past decades, a great deal of modified N-glycosides, 15 - 16 C-glycosides 17 - 19 and S-glycosides have been emphasized, 20 - 21 but only a few S-glycosides bearing 1,2,4-triazole have been reported. 21 In view of this, we turned our attention to the synthesis of novel S-glycosides possessing 1,2,4-triazole from 3-aryl-5-mercapto-1,2,4-triazole and tetra- O -acetyl-α-D-glucopyanosyl bromide. The antibacterial activities were also evaluated.
RESULTS AND DISCUSSIONS
The synthetic route for the target compounds is outlined in 1 . 3-Aryl-5-mercapto-1,2,4-triazoles ( 2a ~ 2k ) were prepared via the reaction of acylhydrazines with potassium thiocyanate in the presence of 1.2 M hydrochloric acid and subsequent intramolecular dehydration of the precipitate arylthiosemicarbazides in 8% sodium hydroxide solution. The final recrystallization from 95% ethanol affords pure 2a ~ 2k . 22 5-Aryl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole ( 3a ~ 3k ) were obtained by the direct glycosylation of ( 2a ~ 2k ) with tetra- O -acetyl-α-D-glucopyanosyl bromide in ethanol in the presence of potassium hydroxide. The deacetylation of 3a ~ 3k using sodium methoxide in methanol gave the corresponding 5-aryl-3-(β-D-glucopyranosylthio)-1,2,4-triazoles ( 4a ~ 4k ) in good yields.
The structure assignments of 3a ~ 3k and 4a ~ 4k were based on 1 H NMR, 13 C NMR and elemental analyses. In 1 H NMR spectrum of 3a ~ 3k , four singlets in the region of δ 1.96-2.13 were attributed to four acetyl groups. Seven protons of the sugar moiety exhibited the multiplets at δ 3.76-5.52. The aryl groups were found in the region of δ 6.91-8.28. While in the 1 H NMR spectrum of 4a ~ 4k , the disappearance of four sharp singlets around δ 2.00 could be mainly due to successful deacetylation of 3a ~ 3k . Seven protons of the sugar moiety exhibited the multiplets at δ 3.15-4.84. Only β-anomer was obtained as judged by a doublet at δ 4.70-4.84 ( J H1,H2 = 8.7-9.9 Hz) of the anomeric proton (H-1) in the sugar moiety.
PPT Slide
Lager Image
Ar=Ph(a), o-CH3Ph(b), p-CH3Ph(c), o-ClPh(d), p-ClPh(e), m-ClPh(f), o-BrPh(g), p-BrPh(h), o-OHPh(i), o-OMePh(j), p-OMePh(k)
- Antibacterial Activity
Compounds 4a ~ 4k were screened for their antibacterial activity against Escherichia coli , Streptococcus , Bacillus subtilis , and Staphylococus aureu employing the cup-plate method at the concentration of 200 μg/mL in nutrient agar media. The zone of the growth inhibition of bacteria, produced by diffusion of the compounds from the cup into the surrounding medium, was measured after 24 h. The results are listed in 1 . The antibacterial activity showed that most of the compounds were active against microorganisms. It is worthwhile to notice that compound 4i showed a good inhibitory effect to these bacteria, but 4j ~ 4k do not express antibacterial activity.
Antibacterial activity of compounds4a-4k
PPT Slide
Lager Image
Zone diameter of growth inhibition: < 10 mm (-), 10 - 13 mm (+), 14 - 17 mm (++) and 18 - 21 mm (+++). Diameter of the cup = 8 mm.
The investigation on the sructure-activity relationship shows that hydroxy group enhances the antibacterial action of the title compounds. Further investigation on the biological activity of these compounds is in progress.
EXPERIMENTAL SECTION
The melting points were taken on an X-4 microscopic melting point apparatus and are uncorrected. All the 1 H NMR and 13 C NMR spectra were recorded at room temperature on a Varian Mercury-300 MHz spectrometer with TMS as internal standard. Elemental analysis was performed on an Elementar Vario EL apparatus. All reagents of analytical grade were used without purification. 3-Aryl-5-mercapto-1,2,4-triazole ( 2a - 2k ) were synthesized according to the literature. 21
- General procedure for preparation of 5-aryl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3a~3k)
3-Aryl-5-mercapto-1,2,4-triazole ( 2a ~ 2k ) (1 mmol) was dissolved in the solution of KOH (1 mmol) in ethanol (10 mL). The mixture was stirred at room temperature for 30 min. Compound of tetra- O -acetyl-α-D-glucopyanosyl bromide (1 mmol, 0.41 g) was then added to the solution, which was stirred at room temperature for 12 h. The mixture was filtered and washed with water. The crude product was purified by flash column chromatography on silica gel with petroleum ether/ethyl acetate as eluent.
5-Phenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3a): Yield: 49%. mp 149 - 151 ℃; [α] D -43˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 1.96 (s, 3 H, CH 3 C=O), 1.97 (s, 3 H, CH 3 C=O), 1.98 (s, 3 H, CH 3 C=O) 2.00 (s, 3 H, CH 3 C=O), 3.76-3.82 (m, 1 H, Glc-H-5), 4.14-4.16 (m, 2 H, Glc-H-6), 5.04-5.14 (m, 2 H, Glc-H-2, H-4), 5.23-5.29 (m, 2 H, Glc-H-1, H-3), 7.36-7.39 (m, 3 H, ArH), 7.94-7.98 (m, 2 H, ArH); 13 C NMR (CDCl 3 ): δ 20.39, 61.75, 67.96, 69.89, 73.52, 75.95, 83.27, 126.30, 128.15, 128.71, 130.07, 169.33, 169.53, 169.99, 170.90; Anal. Calcd. for C 22 H 25 N 3 O 9 S: C, 52.06; H, 4.97; N, 8.28; Found: C, 52.21; H, 4.94; N, 8.16.
5-o-Methylphenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3b): Yield: 53%; mp 100 -102 ℃; [α] D -31˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 1.98 (s, 3 H, CH 3 C=O), 1.99 (s, 3 H, CH 3 C=O), 2.00 (s, 3 H, CH 3 C=O), 2.02 (s, 3 H, CH 3 C=O), 2.53 (s, 3 H, ArCH 3 ), 3.78-3.82 (m, 1 H, Glc-H-5), 4.17-4.21 (m, 2 H, Glc-H-6), 5.06-5.19 (m, 2 H, Glc-H-2, H-4), 5.24-5.32 (m, 2 H, Glc-H-1, H-3), 7.19-7.30 (m, 3 H, ArH), 7.65-7.67 (m, 1 H, ArH); 13 C NMR (CDCl 3 ): δ 20.45, 21.03, 29.56, 61.84, 68.03, 69.84, 73.66, 76.04, 83.27, 125.95, 129.03, 129.86, 131.28, 137.05, 169.39, 169.51, 170.08, 170.83; Anal. Calcd. for C 23 H 27 N 3 O 9 S: C, 52.97; H, 5.22; N, 8.06; Found: C, 53.04; H, 5.61; N, 8.21.
5-p-Methylphenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3c): Yield: 33%; mp 150 - 152 ℃; [α] D -46˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 1.98 (s, 3 H, CH 3 C=O), 1.99 (s, 3 H, CH 3 C=O), 2.00 (s, 3 H, CH 3 C=O), 2.01 (s, 3 H, CH 3 C=O), 2.35 (s, 3 H, ArCH 3 ), 3.78-3.81 (m, 1 H, Glc-H-5), 4.15-4.18 (m, 2 H, Glc-H-6), 5.06-5.15 (m, 2 H, Glc-H-2, H-4), 5.24-5.27 (m, 2 H, Glc- H-1, H-3), 7.20 (d, 2 H, J = 8.1 Hz, ArH), 7.85 (d, 2 H, J = 8.1 Hz, ArH); 13 C NMR (CDCl 3 ): δ 20.43, 21.29, 61.78, 68.01, 69.93, 73.58, 75.98, 83.37, 129.46, 136.30, 140.39, 169.36, 169.57, 170.05, 170.92; Anal. Calcd. for C 23 H 27 N 3 O 9 S: C, 52.97; H, 5.22; N, 8.06; Found: C, 52.70; H, 5.21; N, 8.09.
5-o-Chlorophenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3d): Yield: 34%; mp 133 - 135 ℃; [α] D -19˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 2.01 (s, 3 H, CH 3 C=O), 2.02 (s, 3 H, CH 3 C=O), 2.03 (s, 3 H, CH 3 C=O), 2.05 (s, 3 H, CH 3 C=O), 3.79-3.85 (m, 1 H, Glc-H-5), 4.18-4.23 (m, 2 H, Glc-H-6), 5.14-5.23 (m, 2 H, Glc-H-2, H-4), 5.31 (t, 1 H, J H2,H3 = 9.3 Hz, Glc-H-3), 5.38 (d, 1 H, J H1,H2 = 10.5 Hz, Glc-H-1), 7.38-7.41 (m, 2 H, ArH), 7.47-7.49 (m, 1 H, ArH), 8.14-8.18 (m, 1 H, ArH); 13 C NMR (CDCl 3 ): δ 20.51, 61.45, 67.61, 69.58, 73.44, 76.47, 83.18, 122.47, 127.16, 130.97, 131.26, 132.94, 161.36, 164.69, 169.31, 169.42, 169.94, 170.55; Anal. Calcd. for C 22 H 24 ClN 3 O 9 S: C, 48.76; H, 4.46; N, 7.75; Found: C, 48.44; H, 4.57; N, 7.78.
5-p-Chlorophenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3e): Yield: 53%; mp 86 - 88 ℃; [α] D -55˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 1.99 (s, 3 H, CH 3 C=O), 2.01 (s, 3 H, CH 3 C=O), 2.04 (s, 3 H, CH 3 C=O), 2.05 (s, 3 H, CH 3 C=O), 3.80 (ddd, J H4,H5 = 9.9 Hz, Glc-H-5), 4.17 (dd, J H5,H6’ = 4.5 Hz, Glc-H-6’), 4.24 (dd, 1 H, J H5,H6 = 2.4 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 5.05-5.16 (m, 3 H, Glc-H-2, H-3, H-4), 5.24-5.30 (m, 1 H, Glc-H-1), 7.37 (d, 2 H, J = 8.4 Hz, ArH), 7.95 (d, 2 H, J = 8.4 Hz, ArH); 13 C NMR (CDCl 3 ): δ 20.46, 20.66, 61.78, 67.96, 69.95, 73.40, 76.21, 83.12, 127.68, 128.96, 135.84, 169.38, 169.57, 170.03, 171.05; Anal. Calcd. for C 22 H 24 ClN 3 O 9 S: C, 48.76; H, 4.46; N, 7.75; Found: C, 48.59; H, 4.39; N, 7.71.
5-m-Chlorophenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3f): Yield: 31%; mp 138 - 140 ℃; [α] D -54˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 2.01 (s, 3 H, CH 3 C=O), 2.04 (s, 3 H, CH 3 C=O), 2.08 (s, 3 H, CH 3 C=O), 2.13 (s, 3 H, CH 3 C=O), 3.82 (ddd, J H4,H5 = 9.9 Hz, Glc-H-5), 4.16 (dd, J H5,H6’ = 5.1 Hz, Glc-H-6’), 4.34 (dd, 1 H, J H5,H6 = 2.4 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 5.04-5.14 (m, 3 H, Glc-H-2, H-3, H-4), 5.25-5.32 (m, 1 H, Glc-H-1), 7.35-7.39 (m, 2 H, ArH), 7.92-7.99 (m, 1 H, ArH), 8.07 (s, 1 H, ArH); 13 C NMR (CDCl 3 ): δ 20.51, 20.75, 61.78, 67.93, 69.93, 73.28, 76.30, 82.94, 124.42, 126.48, 129.74, 129.98, 131.38, 134.71, 169.38, 169.57, 170.02, 171.16; Anal. Calcd. for C 22 H 24 ClN 3 O 9 S: C, 48.76; H, 4.46; N, 7.75; Found: C, 48.94; H, 4.47; N, 7.73.
5-o-Bromophenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3g): Yield: 71%; mp 132 - 134 ℃; [α] D -18˚ (c 1, CH 2 Cl 2 ; 1 H NMR (CDCl 3 ): δ 1.99 (s, 3 H, CH 3 C=O), 2.01 (s, 3 H, CH 3 C=O), 2.02 (s, 3 H, CH 3 C=O), 2.04 (s, 3 H, CH 3 C=O), 3.82 (ddd, J H4,H5 = 9.9 Hz, Glc-H-5), 4.14 (dd, J H5,H6’ = 2.4 Hz, Glc-H-6’), 4.22 (dd, 1 H, J H5,H6 = 5.1 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 5.11 (d, 1 H, J H2,H3 = 9.9 Hz, Glc-H-2), 5.17 (t, 1 H, J H4,H5 = 9.9 Hz, Glc-H-4), 5.29 (d, 1 H, J H3,H4 = 9.6 Hz,Glc-H-3), 5.36 (d, 1 H, J H1,H2 = 9.9 Hz,Glc-H-1), 7.28 (t, 1 H, J = 7.8 Hz, ArH), 7.40 (t, 1 H, J = 7.8 Hz, ArH), 7.65 (d, 1 H, J = 7.8 Hz, ArH), 7.98 (d, 1 H, J = 7.8 Hz, ArH); 13 C NMR (CDCl 3 ): δ 20.51, 61.87, 68.06, 69.87, 73.69, 76.08, 83.37, 120.75, 127.74, 131.35, 131.86, 133.89, 169.34, 169.45, 170.06, 170.76; Anal. Calcd. for C 22 H 24 BrN 3 O 9 S: C, 45.06; H, 4.13; N, 7.17; Found: C, 44.97; H, 4.16; N, 7.40.
5-p-Bromophenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3h): Yield: 55%; mp 159 - 161 ℃; [α] D -48˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 2.01 (s, 3 H, CH 3 C=O), 2.03 (s, 3 H, CH 3 C=O), 2.07 (s, 3 H, CH 3 C=O), 2.10 (s, 3 H, CH 3 C=O), 3.80 (ddd, J H4,H5 = 9.9 Hz, Glc-H-5), 4.17 (dd, J H5,H6’ = 5.1 Hz, Glc-H-6’), 4.30 (dd, 1 H, J H5,H6 = 2.4 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 5.06-5.14 (m, 3 H, Glc-H-2, H-3, H-4), 5.25-5.28 (m, 1 H, Glc-H-1), 7.55 (d, 2 H, J = 8.1 Hz, ArH), 7.92 (d, 2 H, J = 8.4 Hz, ArH); 13 C NMR (CDCl 3 ): δ 20.51, 20.75, 61.77, 67.93, 69.92, 73.32, 76.25, 83.00, 127.92, 131.92, 169.39, 169.60, 170.06, 171.16; Anal. Calcd. for C 22 H 24 BrN 3 O 9 S: C, 45.06; H, 4.13; N, 7.17; Found: C, 45.10; H, 3.94; N, 7.08.
5-o-Hydroxyphenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3i): Yield: 50%; mp 178 - 180 ℃; [α] D -49˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 1.99 (s, 3 H, CH 3 C=O), 2.02 (s, 3 H, CH 3 C=O), 2.04 (s, 3 H, CH 3 C=O), 2.06 (s, 3 H, CH 3 C=O), 3.82-3.85 (m, 1 H, Glc-H-5), 4.20-4.23 (m, 2 H, Glc-H-6), 5.07-5.17 (m, 3 H, Glc-H-2, H-3, H-4), 5.27-5.30 (m, 1 H, Glc-H-1), 6.91 (t, 1 H, J = 7.5 Hz, ArH), 7.01 (d, 1 H, J = 7.5 Hz, ArH), 7.31 (t, 1H, J = 7.8 Hz, ArH), 7.82 (d, 1 H, J = 7.8 Hz, ArH), 10.71 (s, 1 H, Ar-OH); 13 C NMR (CDCl 3 ): δ 20.45, 20.54, 61.81, 67.92, 69.80, 73.54, 76.22, 83.11, 117.53, 119.63, 125.95, 132.15, 156.65, 169.44, 169.70, 170.11, 177.22.); Anal. Calcd. for C 22 H 25 N 3 O 10 S: C, 50.47; H, 4.81; N, 8.03. Found: C, 50.40; H, 4.96; N, 8.09.
5-o-Methoxyphenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3j): Yield: 34%; mp 157 - 158 ℃; [α] D -31˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 1.98 (s, 3 H, CH 3 C=O), 2.00 (s, 3 H, CH 3 C=O), 2.02 (s, 3 H, CH 3 C=O), 2.04 (s, 3 H, CH 3 C=O), 3.83 (ddd, J H4,H5 = 9.9 Hz, Glc-H-5), 4.04 (s, 3 H, Ar-OCH 3 ), 4.10 (dd, J H5,H6’ = 1.8 Hz, Glc-H-6’), 4.25 (dd, 1 H, J H5,H6 = 4.5 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 5.12-5.52 (m, 3 H, Glc-H-2, H-3, H-4), 5.50 (d, 1 H, J H1,H2 = 10.5 Hz,Glc-H-1), 7.05 (d, 1 H, J = 8.1 Hz, ArH), 7.11 (t, 1 H, J = 7.8 Hz, ArH), 7.44 (t, 1 H, J = 7.8 Hz, ArH), 8.28 (d, 1 H, J = 7.5 Hz, ArH); 13 C NMR (CDCl 3 ): δ 20.57, 56.00, 61.87, 68.07, 69.84, 73.93, 75.96, 83.67, 111.18, 114.66, 121.52, 129.52, 131.90, 153.82, 156.71, 156.87, 169.38, 169.45, 170.15, 170.67; Anal. Calcd. for C 23 H 27 N 3 O 10 S: C, 51.39; H, 5.06; N, 7.82; Found: C, 51.24; H, 4.99; N, 7.91.
5-p-Methoxyphenyl-3-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylthio)-1,2,4-triazole (3k): Yield: 70%; mp 172 - 174 ℃; [α] D -23˚ (c 1, CH 2 Cl 2 ); 1 H NMR (CDCl 3 ): δ 2.01 (s, 3 H, CH 3 C=O), 2.02 (s, 3 H, CH 3 C=O), 2.05 (s, 3 H, CH 3 C=O), 2.09 (s, 3 H, CH 3 C=O), 3.72-3.79 (m, 1 H, Glc-H-5), 3.83 (s, 3 H, ArOCH 3 ), 4.15-4.25 (m, 2 H, Glc-H-6), 5.07-5.19 (m, 2 H, Glc-H-2, H-4), 5.25-5.31 (m, 2 H, Glc-H-1, H-3), 6.94 (d, 2 H, J = 8.1 Hz, ArH), 7.93 (d, 2 H, J = 8.1 Hz, ArH); 13 C NMR (CDCl 3 ): δ 20.53, 20.68, 55.30, 61.78, 68.00, 69.92, 73.55, 76.07, 83.29, 114.17, 127.92, 161.10, 169.41, 169.62, 170.09, 171.02; Anal. Calcd. for C 23 H 27 N 3 O 10 S: C, 51.39; H, 5.06; N, 7.82; Found: C, 51.11; H, 5.00; N, 7.76.
- General procedure for preparation of 5-aryl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4a~4k)
The compound ( 3a ~ 3k ) (0.2 mmol) was added to NaOMe (5 M)-MeOH (3 mL) and then stirred at room temperature for 1 ~ 2 h. The solution was concentrated and the crude product was purified by flash column chromatography on silica gel.
5-Phenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4a): Yield: 93%; [α] D +27˚ (c 1, MeOH); 1 H NMR (D 2 O): δ 3.29-3.36 (m, 3 H, Glc-H-2, H-3, H-5), 3.49 (t, 1 H, J H4,H5 = 8.7 Hz, Glc-H-4), 3.61 (dd, 1 H, J H5,H6’ = 5.1 Hz, Glc-H-6’), 3.78 (dd, 1 H, J H5,H6 = 1.8 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 4.77 (d, 1 H, J H1,H2 = 9.9 Hz, Glc-H-1), 7.31-7.43 (m, 3 H, ArH), 7.88 (d, 2 H, J = 7.8 Hz, ArH); 13 C NMR (D 2 O): δ 49.00, 60.95, 69.54, 72.35, 77.37, 80.14, 86.85, 125.82, 129.06, 131.47, 153.72, 164.22; Anal. Calcd. for C 14 H 17 N 3 O 5 S: C, 49.55; H, 5.05; N, 12.38; Found: C, 49.39; H, 4.93; N, 12.18.
5-o-Methylphenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4b): Yield: 85%; [α] D -5˚ (c 0.5, MeOH); 1 H NMR (D 2 O): δ 2.33 (s, 1 H, ArCH 3 ), 3.30-3.41 (m, 3 H, Glc-H-2, H-3, H-5), 3.52 (t, 1 H, J H4,H5 = 9.0 Hz, Glc-H-4), 3.65 (dd, 1 H, J H5,H6’ = 5.1 Hz, Glc-H-6’), 3.83 (dd, 1 H, J H5,H6 = 1.5 Hz, J H6,H6’ = 12.6 Hz, Glc-H-6), 4.81 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 7.13-7.21 (m, 3 H, ArH), 7.48 (d, 1 H, J = 6.9 Hz, ArH); 13 C NMR (D 2 O): δ 22.46, 63.55, 72.12, 74.87, 79.86, 82.73, 89.34, 128.45, 131.47, 132.12, 133.27, 134.77, 139.82, 155.42, 167.38; Anal. Calcd. for C 15 H 19 N 3 O 5 S: C, 50.98; H, 5.42; N, 11.89; Found: C, 50.81; H, 5.70; N, 12.12.
5-p-Methylphenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4c): Yield: 89%; [α] D -90˚ (c 1, MeOH); 1 H NMR (D 2 O): δ 2.17 (s, 1 H, ArCH 3 ), 3.24-3.35 (m, 3 H, Glc-H-2, H-3, H-5), 3.44 (t, 1 H, J H4,H5 = 8.4 Hz, Glc-H-4), 3.57 (dd, 1 H, J H5,H6’ = 8.1 Hz, Glc-H-6’), 3.75 (d, 1 H, J H6,H6’ = 12.0 Hz, Glc-H-6), 4.72 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 7.14 (d, 2 H, J = 8.1 Hz, ArH), 7.71 (d, 2 H, J = 8.1 Hz, ArH); 13 C NMR (D 2 O): δ 20.44, 60.95, 69.58, 72.14, 77.47, 80.14, 86.95, 125.74, 128.55, 129.56, 139.16, 153.55, 164.22; Anal. Calcd. for C 15 H 19 N 3 O 5 S: C, 50.98; H, 5.42; N, 11.89; Found: C, 51.22; H, 5.63; N, 12.15.
5-o-Chlorophenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4d): Yield: 88%; [α] D +8˚ (c 1, MeOH); 1 H NMR (D 2 O): δ 3.26-3.35 (m, 3 H, Glc-H-2, H-3, H-5), 3.47 (t, 1 H, J H4,H5 = 9.0 Hz, Glc-H-4), 3.59 (dd, 1 H, J H5,H6’ = 5.4 Hz, Glc-H-6’), 3.77 (dd, 1 H, J H5,H6 = 1.8 Hz, J H6,H6’ = 12.6 Hz, Glc-H-6), 4.75 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 7.29-7.32 (m, 2 H, ArH), 7.44-7.61 (m, 2 H, ArH); 13 C NMR (D 2 O): δ 32.31, 60.88, 69.74, 72.20, 77.28, 80.11, 86.69, 127.06, 130.08, 131.16, 153.05, 162.59; Anal. Calcd. for C 14 H 16 ClN 3 O 5 S: C, 44.98; H, 4.31; N, 11.24; Found: C, 44.72; H, 4.59; N, 10.95.
5-p-Chlorophenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4e): Yield: 90%; [α] D +7˚ (c 1, MeOH); 1 H NMR (D 2 O): δ 3.31-3.44 (m, 3 H, Glc-H-2, H-3, H-5), 3.53 (t, 1 H, J H4,H5 = 9.0 Hz, Glc-H-4), 3.67 (dd, 1 H, J H5,H6’ = 2.4 Hz, Glc-H-6’), 3.84 (d, 1 H, J H6,H6’ = 12.6 Hz, Glc-H-6), 4.83 (d, 1 H, J H1, H2 = 9.0 Hz, Glc-H-1), 7.49 (d, 2 H, J = 8.1 Hz, ArH), 7.88 (d, 2 H, J = 8.1 Hz, ArH); 13 C NMR (D 2 O): δ 60.94, 69.53, 72.31, 77.33, 80.11, 86.88, 127.06, 128.83, 129.96, 133.71, 153.62, 163.23; Anal. Calcd. for C 14 H 16 ClN 3 O 5 S: C, 44.98; H, 4.31; N, 11.24; Found: C, 44.84; H, 4.53; N, 11.50.
5-m-Chlorophenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4f): Yield: 89%; [α] D +3˚ (c 1, MeOH); 1 H NMR (D 2 O): δ 3.27-3.41 (m, 3 H, Glc-H-2, H-3, H-5), 3.49 (t, 1 H, J H4,H5 = 8.1 Hz, Glc-H-4), 3.61 (dd, 1 H, J H5,H6’ = 5.1 Hz, Glc-H-6’), 3.79 (dd, 1 H, J H5,H6 = 1.2 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 4.75 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 7.18-7.27 (m, 2 H, ArH), 7.67 (d, 1 H, J = 7.5 Hz, ArH), 7.73 (s, 1 H, ArH); 13 C NMR (D 2 O): δ 30.27, 60.84, 69.38, 72.15, 77.10, 80.02, 86.67, 123.91, 125.41, 128.42, 130.34, 133.03, 134.08, 153.65, 162.80; Anal. Calcd. for C 14 H 16 ClN 3 O 5 S: C, 44.98; H, 4.31; N, 11.24; Found: C, 44.66; H, 4.22; N, 11.19.
5-o-Bromophenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4g): Yield: 90%; [α] D +8˚ (c 0.5, MeOH); 1 H NMR (D 2 O): δ 3.25-3.39 (m, 3 H, Glc-H-2, H-3, H-5), 3.45 (t, 1 H, J H4,H5 = 8.1 Hz, Glc-H-4), 3.60 (dd, 1 H, J H5,H6’ = 5.1 Hz, Glc-H-6’), 3.77 (dd, 1 H, J H5,H6 = 1.8 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 4.76 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 7.26 (t, 1 H, J = 7.5 Hz, ArH), 7.34-7.44 (m, 2 H, ArH), 7.65 (d, 1 H, J = 7.5 Hz, ArH); 13 C NMR (D 2 O): δ 60.95, 69.62, 72.37, 77.57, 80.24, 86.85, 122.19, 127.58, 130.49, 131.03, 133.13, 133.62, 153.07, 163.87; Anal. Calcd. for C 14 H 16 BrN 3 O 5 S: C, 40.20; H, 3.86; N, 10.05; Found: C, 40.02; H, 3.70; N, 10.19.
5-p-Bromophenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4h): Yield: 95%; [α] D +3˚ (c 1, MeOH); 1 H NMR (D 2 O): δ 3.27-3.42 (m, 3 H, Glc-H-2, H-3, H-5), 3.49 (t, 1 H, J H4,H5 = 9.0 Hz, Glc-H-4), 3.62 (dd, 1 H, J H5,H6’ = 5.4 Hz, Glc-H-6’), 3.79 (dd, 1 H, J H5,H6 = 1.8 Hz, J H6,H6’ = 12.3 Hz, Glc-H-6), 4.77 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 7.46 (d, 2 H, J = 8.4 Hz, ArH), 7.67 (d, 2 H, J = 8.4 Hz, ArH); 13 C NMR (D 2 O): δ 60.88, 69.42, 72.22, 77.19,80.05, 86.75, 122.10, 127.36, 130.35, 131.85, 153.75, 163.38; Anal. Calcd. for C 14 H 16 BrN 3 O 5 S: C, 40.20; H, 3.86; N, 10.05; Found: C, 45.87; H, 4.05; N, 10.25.
5-o-Hydroxyphenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4i): Yield: 85%; [α] D -10˚ (c 0.6, MeOH); 1 H NMR (D 2 O): δ 3.15-3.30 (m, 3 H, Glc-H-2, H-3, H-5), 3.36 (t, 1 H, J H4,H5 = 8.4 Hz, Glc-H-4), 3.51 (dd, 1 H, J H5,H6’ = 5.1 Hz, Glc-H-6’), 3.67 (d, 1 H, J H6,H6’ = 12.3 Hz, Glc-H-6), 4.84 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 6.63-6.72 (m, 2 H, ArH), 7.08 (t, 1 H, J = 7.5 Hz, ArH), 7.52 (d, 1 H, J = 7.5 Hz, ArH); 13 C NMR (D 2 O): δ 60.83, 69.36, 72.09, 77.21, 80.14, 86.47, 117.55, 118.28, 127.62, 130.60, 152.94, 159.69, 162.80; Anal. Calcd. for C 14 H 17 N 3 O 6 S: C, 47.32; H, 4.82; N, 11.82; Found: C, 47.41; H, 4.64; N, 11.98.
5-o-Methoxyphenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4j): Yield: 87%; [α] D +9˚ (c 0.5, MeOH); 1 H NMR (D 2 O): δ 3.25-3.37 (m, 3 H, Glc-H-2, H-3, H-5), 3.47 (t, 1 H, J H4,H5 = 8.7 Hz, Glc-H-4), 3.61 (dd, 1 H, J H5,H6’ = 5.1 Hz, Glc-H-6’), 3.78 (d, 1 H, J H6,H6’ = 12.3 Hz, Glc-H-6), 3.76 (s, 3 H, ArOCH 3 ), 4.76 (d, 1 H, J H1, H2 = 9.9 Hz, Glc-H-1), 7.02 (t, 1 H, J = 7.5 Hz, ArH), 7.10 (d, 1 H, J = 8.7 Hz, ArH), 7.39 (t, 1 H, J = 8.7 Hz, ArH), 7.82 (d, 1 H, J = 7.8 Hz, ArH); 13 C NMR (D 2 O): δ 56.08, 62.60, 71.12, 73.77, 79.24, 82.06, 87.89, 112.62, 121.22, 121.69, 131.10, 131.79, 154.26, 158.58, 159.10; Anal. Calcd. for C 15 H 19 N 3 O 6 S: C, 48.77; H, 5.18; N, 11.38; Found: C, 48.53; H, 5.34; N, 11.49.
5-p-Methoxyphenyl-3-(β-D-glucopyranosylthio)-1,2,4-triazole (4k): Yield: 89%; [α] D -37˚ (c 1, MeOH); 1 H NMR (D 2 O): δ 3.24-3.35 (m, 3 H, Glc-H-2, H-3, H-5), 3.44 (t, 1 H, J H4,H5 = 8.7 Hz, Glc-H-4), 3.56 (m, 1 H, Glc-H-6’), 3.60 (s, 1 H, ArOCH 3 ), 3.74 (d, 1 H, J H6,H6’ = 12.3 Hz, Glc-H-6), 4.70 (d, 1 H, J H1, H2 = 9.6 Hz, Glc-H-1), 6.82 (d, 2 H, J = 8.1 Hz, ArH), 7.71 (d, 2 H, J = 8.4 Hz, ArH); 13 C NMR (D 2 O): δ 55.30, 60.83, 69.39, 72.19, 77.16, 80.00, 86.73, 114.22, 124.51, 127.19, 153.22, 159.11, 163.93; Anal. Calcd. for C 15 H 19 N 3 O 6 S: C, 48.77; H, 5.18; N, 11.38; Found: C, 48.44; H, 5.36; N, 11.20.
Acknowledgements
We are gratefully acknowledged the financial support by Nature Science Foundation of the Education Department of Henan Province (2008A610007) and Xinxiang Medical University (No. 04GXLP03).
References
Randhavane P. V. , Narwade S. K. , Sagi G. , Karale B. K. 2010 Indian. J. Chem. 49B 89 -
Turan-Zitouni G. , Kaplancýklý Z. A. , Yýldýz M. T. , Chevallet P. , Kaya D. 2005 Eur. J. Med .Chem. 40 607 -    DOI : 10.1016/j.ejmech.2005.01.007
Lebouvier N. , Giraud F. , Corbin T. , Na Y. M. , Baut G. L. , Marchand P. , Borgne M. L. 2006 Tetrahedron. Lett. 47 6479 -    DOI : 10.1016/j.tetlet.2006.03.199
Naito Y. , Akahoshi F. , Takeda S. , Okada T. , Kajii M. , Nishimura H. , Sugiura M. , Fukaya C. , Kagitani Y. 1996 J. Med. Chem. 39 3019 -    DOI : 10.1021/jm9507993
Kane J. M. , Dudley M. W. , Sorensen S. M. , Miller F. P. 1988 J. Med. Chem. 31 1253 -    DOI : 10.1021/jm00401a031
Mullican M. D. , Wilson M. W. , Connor D. T. , Kostlan C. R. , Schrier D. J. , Dyer R. D. 1993 J. Med. Chem. 36 1090 -    DOI : 10.1021/jm00060a017
Schenone S. , Bruno O. , Ranise A. , Bondavalli F. , Filippeli W. , Rossi E. , Falcone G. 1998 Il Farmaco. 53 590 -    DOI : 10.1016/S0014-827X(98)00074-3
Liu M. G. , Fu S. L. 2000 Journal of Hubei Three Gorges University 22 50 -
Pellissier H. 2005 Tetrahedron 61 2947 -    DOI : 10.1016/j.tet.2005.01.070
Xiang J. N. , Chen C. Y. , Jiang L. H. , Zhou H. X. , Yin K. , Deng X. Q. , Chen J. , He X. X. , Wang K. M. 2007 Chem. J. Chinese University 28 1497 -
Hu X. , Yu S. Y. , Cao S. W. , Ruan Z. 2007 Chemical Research and Application 19 465 -
Witkowski J. T. , Robins R. K. , Sidwell R. W. , Simon L. N. 1972 J. Med. Chem. 15 1150 -    DOI : 10.1021/jm00281a014
Györgydeák Z. , Holzer W. , Thiem J. 1997 Carbohydr. Res. 302 229 -    DOI : 10.1016/S0008-6215(97)00116-X
Awad L. F. , El Ashry E. S. H. 1998 Carbohydr. Res. 312 9 -    DOI : 10.1016/S0008-6215(98)00205-5
Al-Masoudi N. A. , Al-Soud Y. A. 2002 Tetrahedron. Lett. 43 4021 -    DOI : 10.1016/S0040-4039(02)00733-5
Chen X. M. , Li Z. J. , Ren Z. X . , Huang Z. T. 1999 Carbohydr. Res. 315 262 -    DOI : 10.1016/S0008-6215(99)00020-8
Sanghvi Y. S. , Hanna N. B. , Larson S. B. , Fujitaki J. M. , Willis R. C. , Smith R. A. , Robins R. K. , Revankar G. R. 1988 J. Med. Chem. 31 330 -    DOI : 10.1021/jm00397a010
Al-Masoudi N. A. , Al-Soud Y. A. , Lagoja I. M. 1999 Carbohydr. Res. 318 67 -    DOI : 10.1016/S0008-6215(99)00084-1
Nasr A. Z. 2005 J. Chin. Chem. Soc. 52 519 -
Leon-Ruaud P. , Allainmat M. , Plusquellec D. 1991 Tetrahedron. Lett. 32 1557 -    DOI : 10.1016/S0040-4039(00)74271-7
Ioana S. , Vasile B. , Micrea N. , Nicolae D. , Eugen S. 2005 Revista de Chimie. 56 1249 -
Wang Z. Y. , Shi H. J. , Shi X. H. 1997 Chin. J. Org. Chem. 17 271 -