Advanced
Effect of Ultrasonic Pretreatment on Analysis of Potassium Ion in Human Urine Using 15-Crown-5-Anthracene-based Membrane
Effect of Ultrasonic Pretreatment on Analysis of Potassium Ion in Human Urine Using 15-Crown-5-Anthracene-based Membrane
Journal of the Korean Chemical Society. 2003. Feb, 47(1): 13-18
  • Published : February 20, 2003
Download
PDF
Export by style
Article
Author
Metrics
Cited by
About the Authors
Lee, Ji-Young
Chang, Hye-Young
Bae, Zun-Ung

Abstract
The effect of ultrasonic decomposition was introduced to develop a pretreatment method for the analysis of potassium ion in human urine by potentiometry. N-(4��-benzo-15-crown-5)-anthracene-9-imine, which has a good selectivity coefficient for potassium against ammonium, was used as an ion-selective material for the determination of potassium in urine with relatively high concentration of $NH_4{^+}$. Protenis in urine be removed by 85.1% when the sample acidified with 1.0 M $HNO_3$ was preteated for 100 s by sonication. Potential response of the membrane electrode in the pretreated urine had a slope of 54.6(${\pm}0.2,\;n=5$) mV/decade over the linear range of log $[K^+]$=-5~-1(r=0.9997). When an oxidant, $H_2O_2$, was addwd to the urine sonicated with $HNO_3$, the deproteinization increased 10% more than that in case if only $HNO_3$ and then the maximum ratio of ca. 95% was obtained. Moreover, the Nernstian slope for $K^+$ added to the urinary sample increased to 56.7(${\pm}0.1,\;n=3$) mV/decade. When the calibration curves were measured, the slopes did not vary even after the electrode was successively used 20 times with ultrasonic cleaning. The results showed that an ultrasonic pretreatment method provides simplicity in use, reduced treatment time and improved potentiometric characteristics of the membrane as the method effectively removes ca. 95% of proteins in urine.
Keywords
View Fulltext