Advanced
Synthesis of Highly Dispersed Small Metal-Organic Frameworks Crystal Using a Polymer Additive
Synthesis of Highly Dispersed Small Metal-Organic Frameworks Crystal Using a Polymer Additive
Bulletin of the Korean Chemical Society. 2014. Sep, 35(9): 2825-2827
Copyright © 2014, Korea Chemical Society
  • Received : April 14, 2014
  • Accepted : May 01, 2014
  • Published : September 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Tak Hyeon Kim
Yang Sang Cho
Chang Yeon Lee

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
Ethanol, DMF, 2,5-dihydroxyterephthalic acid, cobalt(II) nitrate hexahydrate, and polyvinylpyrrolidone (PVP, M w ≈ 55,000) were purchased from Sigma-Aldrich and used as received. Co-MOF-74 was synthesized according to a published procedure. 11 SEM images were obtained from a FE-SEM (JEOL, JSM-7001F) operated at an acceleration voltage of 10 kV. Samples were coated by a layer of Au-Pt alloys (~3 nm thickness) prior to imaging. Powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku XDS 2000 diffractometer using nickel-filtered copper Kα radiation (λ = 1.5412 Å) over a range of 3° < 2θ < 50° in 0.1° steps with a 1 s counting time per step. Infrared spectra were obtained from a Varian 640-IR spectrophotometer.
Synthesis of P-0, P-5, P-7, and P-14 . 2,5-Dihydroxyterephthalic acid (DHTA) (0.0362 g, 0.182 mmol), Co(NO 3 ) 2 ·6H 2 O (0.178 g, 0.613 mmol), PVP (0 g for P-0, 0.608 g for P-5, 1.014 g for P-7, 2.028 g for P-14), and 15 mL of DMF: ethanol:water (1:1:1, v:v:v) were combined in a 20 mL vial equipped with a magnetic stir bar. The vial was then capped with a Teflon-lined cap and sonicated for 5 min to obtain a homogeneous solution. The resulting reaction mixture was placed in a 100 ℃ oil bath and vigorously stirred (300 rpm). After 6 h, orange powder was precipitated from the reaction mixture. The resulting suspension was cooled to room temperature. Finally, the sample was washed twice with DMF (40 mL) and twice with MeOH (40 mL) to remove excess PVP and centrifuged at 2500 rpm. The remaining orange powder was then stored in MeOH until further use.
N2 Sorption Isotherms . N 2 adsorption/desorption isotherms were measured volumetrically at 77 K in the range 7.0 × 10 −6 P / P 0 ≤ 1.00 with an Autosorb-iQ outfitted with the micropore option by Quantachrome Instruments (Boynton Beach, Florida USA), running the Autosorb-iQ Win software package. After solvent exchange of the as-synthesized materials with MeOH (2 × 10 mL, 12 h each time), all samples were activated ( i.e ., outgassed) at 250 ℃ for 5 h by using the outgas port of the Autosorb-iQ instrument. The specific surface areas for N 2 were calculated using the Brunauer- Emmett-Teller (BET) model in the linear range, determined using the consistency criteria.
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013R1A1A1058839).
References
Fèrey G. 2008 Chem. Soc. Rev. 37 191 -    DOI : 10.1039/b618320b
Suh M. P. , Park H. J. , Prasad T. K. , Lim D.-W. 2012 Chem. Rev. 112 782 -    DOI : 10.1021/cr200274s
Li J.-R. , Sculley J. , Zhou H.-C. 2012 Chem. Rev. 112 869 -    DOI : 10.1021/cr200190s
Kreno L. E. , Leong K. , Farha O. K. , Allendorf M. , Van Duyne R. P. , Hupp J. T. 2012 Chem. Rev. 112 1105 -    DOI : 10.1021/cr200324t
Lee C. Y. , Farha O. K. , Hong B. J. , Sarjeant A. A. , Nguyen S. T. , Hupp J. T. 2011 J. Am. Chem. Soc. 133 15858 -    DOI : 10.1021/ja206029a
Horcajada P. , Gref R. , Baati T. , Allan P. K. , Maurin G. , Couvreur P. , Fèrey G. , Morris R. E. , Serre C. 2012 Chem. Rev. 112 1232 -    DOI : 10.1021/cr200256v
Lee J. , Farha O. K. , Roberts J. , Scheidt K. A. , Nguyen S. T. , Hupp J. T. 2009 Chem. Soc. Rev. 38 1450 -    DOI : 10.1039/b807080f
Sindoro M. , Yanai N. , Jee A.-Y. , Granick S. 2013 Acc. Chem. Res. ASAP
Ranft A. , Betzler S. B. , Haase F. , Lotsch B. V. 2013 CrystEngComm 15 9296 -    DOI : 10.1039/c3ce41152d
Cho W. , Lee H. J. , Oh M. 2008 J. Am. Chem. Soc. 130 16943 -    DOI : 10.1021/ja8039794
Caskey S. R. , Wong-Foy A. G. , Matzger A. J. 2008 J. Am. Chem. Soc. 130 10870 -    DOI : 10.1021/ja8036096
McDonald T. M. , Lee W. R. , Mason J. A. , Wiers B. M. , Hong C. S. , Long J. R. 2012 J. Am. Chem. Soc. 134 7056 -    DOI : 10.1021/ja300034j
Bae Y.-S. , Lee C. Y. , Kim K. C. , Farha O. K. , Nickias P. , Hupp J. T. , Nguyen S. T. , Snurr R. Q. 2012 Angew. Chem. Int. Ed. 51 1857 -    DOI : 10.1002/anie.201107534
Cho H.-Y. , Yang D.-A. , Kim J. , Jeong S.-Y. , Ahn W.-S. 2012 Catal. Today 185 35 -    DOI : 10.1016/j.cattod.2011.08.019
Chmelik C. , Mundstock A. , Dietzel P. D. C. , Caro J. 2014 Microporous Mesoporous Mater. 183 117 -    DOI : 10.1016/j.micromeso.2013.09.002
Lee S. J. , Park G. , Seo D. , Ka D. , Kim S. Y. , Chung I. S. , Song H. 2011 Chemistry - A European Journal 17 8466 -    DOI : 10.1002/chem.201100472
Yanai N. , Sindoro M. , Yan J. , Granick S. 2012 J. Am. Chem. Soc. 135 34 -