Advanced
Synthesis of Organic Carbonates with Alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6H)-carboxylates and ROH/AlCl<sub>3</sub> under Ambient Condition
Synthesis of Organic Carbonates with Alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6H)-carboxylates and ROH/AlCl3 under Ambient Condition
Bulletin of the Korean Chemical Society. 2014. Sep, 35(9): 2758-2764
Copyright © 2014, Korea Chemical Society
  • Received : May 01, 2014
  • Accepted : May 20, 2014
  • Published : September 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Gi Hyeon Sung
Bo Ram Kim
Ki Eun Ryu
Jeum-Jong Kim
IT Materials and Components Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-700, Korea
Yong-Jin Yoon

Abstract
We demonstrated the synthesis of organic carbonates using alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates and alcohol in the presence of aluminum chloride. Alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates were reacted with alcohol in the presence of AlCl 3 in toluene at room temperature to afford the corresponding unsymmetric and symmetric organic carbonates in good to excellent yields. These are efficient and convenient processes. Alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates are solid, stable and non-toxic CO 2 /CO 2 R(Ar) source. It is noteworthy that the reaction is carry out under an ambient and acidic conditions, the easy-to prepare and readily available starting materials and the quantitative isolation of reusable 4,5-dichloropyridazin-3(2 H )-one.
Keywords
Introduction
Organic carbonates are generally safe noncorrosive molecules employed in numerous commercial and synthetic application 1-4 as eco-friendly useful reagents, 2,3,5-10 solvents for Li-ion battery 3,4 and electroanalytics. 3,11 The symmetric organic carbonates [(RO) 2 C=O] are useful as the solvents, whereas the unsymmetric organic carbonates [ROC(=O)OR'] are used as the key-functional group in drugs and other chemicals. Various synthetic methods of organic carbonates by the phosgenation technique using COCl 2 , the oxidative carbonylation of alcohols using CO and transition metals, the reaction of urea with alcohols, the reaction of oxiranes and CO 2 , the reaction of chloroformates, the use of metal carbonate and the organic carbonate interchange reaction have been reported. 1-3,9,12,13 However, the main disadvantages of these methods are the use of toxic, gaseous and/or expensive chemicals and requirement for specific additives. The alkoxycarbonylation using organic carbonate and base be also accompanied by the undesired side reaction. 8,14 Moreover, unsymmetric organic carbonates cannot be prepared by these methods. Therefore, a great deal of research has focused on the development of a convenient and useful synthetic method for symmetric and unsymmetric organic carbonates using a nongaseous and recyclable CO 2 or CO 2 R(Ar) source under non-basic conditions. To avoid the side reaction in the reaction using organic carbamate, the alkoxide or alkoxide equivalent must be prepare under aprotic acid or neutral condition.
Romano et al . 15 reported the synthesis of dimethyl carbonate by oxidative carbonylation of methanol using copper chloride via Cu(OCH 3 )Cl intermediate ( Scheme 1 ). In this reaction, the Cu(OCH 3 )Cl acts as an equivalent of methoxide (MeO ).
PPT Slide
Lager Image
Known and newly designed methods for the synthesis of organic carbonates.
On the other hand, Ball et al . 16 reported the synthesis of organic carbonate by the reaction of carbamate in the presence of the catalyst. As shown in Scheme 1 , alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates 17 have a carbamate functionality. Thus, alkyl/aryl 6-oxopyridazinone-1(6 H )-carboxylates may be use as alkoxy/aryloxy carbonyl source, and also the 4,5-dichloropyridazin-3(2 H )-one anion as the leaving group may be act as a proton acceptor during the reaction. 18-24 Pyridazin-3(2 H )-ones are inexpensive, very stable and good leaving group, and also can be removed and/ or recycles spurred our interest in their use for other transformation according to Yoon et al . 18-24
Although alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )- carboxylates are good carbonyl source, however, these can not use in basic condition because of the side reaction. 25-27 Thus, we required an acidic condition for the synthesis of carbonate from alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates and alcohols.
Inspired by the oxidative carbonyation 1,15,28 and the method of carbamate reaction, 1,16 we attempted to develop an novel convenient synthetic method for unsymmetric and symmetric organic carbonates from alkyl(or aryl) 6-oxopyridazin-1(6 H )-one carboxylate as a carbamate and ROH in the presence of AlCl 3 ( Scheme 1 ).
Herein, we report the synthesis of organic carbonates using ROH/AlCl 3 systems and alkyl(or aryl) 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates system in toluene at room temperature.
Results and Discussion
In order to demonstrate our research motivation, we firstly attempted to find a novel ROH/MCl n system acting alkoxide equivalent. First of all, we selected aluminum chloride as the Lewis acid. Although the reaction of ROH (3 equiv.) with AlCl 3 (1 equiv.) yields the corresponding aluminum alkoxides [Al(OR) 3 ], 29 (ROH-AlCl 3 ) adduct (1:1 ratio) may be easily formed in the initial step of this reaction. If only to remove the proton of (ROH-AlCl 3 ) adducts in the solvent, the residue [(ROAlCl 3 ) ] may be act as the alkoxide. To remove a proton of the adducts, the proton acceptor such as the organic base or the leaving group is required.
  • 3ROH + AlCl3→ 3[(ROH)+(AlCl3)−] → (RO)3Al + 3 HCl
  • ROH + AlCl3→ [(ROH)+(AlCl3)−] + Base →
  • [(ROAlCl3)−][H(Base)+]
Alkyl(or aryl) 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates 3 were prepared by the literature method 17 from 4,5-dichloropyridazin-3(2 H )-one ( 1 ) and the corresponding chloroformate 2 ( Scheme 2 ).
PPT Slide
Lager Image
Synthesis of symmetric and unsymmetric organic carbonates using alcohol-AlCl3 adducts.
As a model reaction to evaluate newly designed reaction, we studied the effect of Lewis acids, protic acids and solvents in the reaction of n -butanol in the presence of Lewis acids or protic acids with phenyl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylate ( 3a ) as a acyl source at room temperature. Among the twelve Lewis acids investigated, one equivalent of aluminum chloride showed the best results (Entry 2, Table 1 ). Next, we investigated the solvent effect using the 4a / 3a /AlCl 3 system. Toluene also showed the best results among the six solvents tested (Entry 3, Table 2 ).
Screening of acid for reaction ofn-butanol with3aa
PPT Slide
Lager Image
aReaction condition: 4a/3a (1:1 mole ratio) in toluene at room temperature. bIsolated yield.
Screening of solvent for reaction ofn-butanol with3aa
PPT Slide
Lager Image
aReaction condition: 4a/AlCl3/3a (1:1:1 mole ratio) at room temperature. bIsolated yield.
On the other hand, we evaluated the reactivity of phenyl chloroformate ( 2a ) as carbonyl source under our condition. Although reaction of n -butanol ( 4a ) with 2a in the presence of AlCl 3 in refluxing toluene gave the carbonate 6a in 20% yield, the reactions did not proceed in the presence of AlCl 3 at room temperature or in the absence of AlCl 3 at room temperature and at reflux temperature in toluene.
PPT Slide
Lager Image
Reaction of phenyl chloroformate (2a) with 4a.
Based on the above preliminary experimental data, we selected ROH/AlCl 3 / 3 (1:1:1 mole ratio) system in toluene at room temperature as the optimized conditions.
To illustrate the versatility of our method, we prepared some unsymmetric organic carbonates using 3a and alcohols under the optimized conditions. Compound 3a was reacted with aliphatic and aromatic alcohols in the presence of aluminum chloride in toluene at room temperature to give the corresponding unsymmetric organic carbonate 5b-5h in 80-90% yields except for 4-(2-hydroxyethyl)phenol ( Table 3 ). Reaction of 3a with 4-(2-hydroxyethyl)phenol in the presence of AlCl 3 under the optimized conditions gave the corresponding carbonate 5i (39%) and diphenyl carbonate (15%) (Entry 8, Table 3 ). The long reaction time may be the cause that generated diphenyl carbonate in this reaction. Actually, the mixture of compound 3a and AlCl 3 was stirred for 10 hours at room temperature to give diphenyl carbonate by the decomposition of 3a . Reaction of 3a with benzenethiol in the presence of AlCl 3 under the optimized conditions also afford the corresponding thiocarbonate 5j (85%) (Entry 9, Table 3 ).
Synthesis of unsymmetric organic carbonatesa
PPT Slide
Lager Image
aReaction condition: 4/AlCl3/3a (1:1:1 mole ratio) in toluene at room temperature. bIsolated yield. cCyclohexanol. dWe obtained diphenyl cabonate in 15% yield.
Next, we attempted to prepare from compound 3b under the same conditions. Reaction of 3b with some aliphatic and aromatic alcohols in the presence of AlCl 3 under the optimized conditions afford the corresponding unsymmetric carbonates 5k-5q in good yields ( Table 4 ).
Synthesis of unsymmetric organic carbonatesa
PPT Slide
Lager Image
aReaction condition: 4/AlCl3/3b (1:1:1 mole ratio) in toluene at room temperature. bIsolated yield. cCyclohexanol.
On the other hand, we attempted the symmetric organic carbonate by our method. Alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates 3 were reacted with alcohols in the presence of AlCl 3 under the optimized conditions to give the corresponding symmetric carbonates 6a-6g in 45-94% yields.
In all case, we isolated quantitatively 4,5-dichloropyridazin- 3(2 H )-one. The structures of all prepared compounds were established by IR, NMR and HRMS. A plausible mechanism showed in Scheme 4 .
PPT Slide
Lager Image
Plausible mechanism for the reaction of phenyl 4,5-dichloro-6-oxopyridazine-1(6H)-carboxylate with ROH/AlCl3 systems.
In summary, an efficient and versatile method was developed for the synthesis of symmetric and unsymmetric organic carbonates. The reaction was carried out in the presence of AlCl 3 in toluene at room temperature, and alkyl/aryl 4,5-dichloro-6-oxopyridazine-1(6 H )-carboxylates are used as a CO or CO 2 R(Ar) source. It may be considered as a novel type that could use N -acylazinone such as carbamate and ROH/AlCl 3 system at room temperature for the synthesis of symmetric and unsymmetric organic carbonates. Our methods are efficient, convenient and practical. It is worthy to note that the reaction use ROH/AlCl 3 system and the stable and non-toxic CO/CO 2 R(Ar) source, the easy-to prepare and readily available starting materials and the quantitative isolation of reusable 4,5-dichloropyridazin-3(2 H )-one. We also believe that our methods would be applicable practically to industrial processes.
Synthesis of symmetric organic carbonatesa
PPT Slide
Lager Image
aReaction condition: 4/AlCl3/3 (1:1:1 mole ratio) in toluene at room temperature. bIsolated yield. cWe used the corresponding alcohol as the reagent and the solvent.
Experimental
General Methods. Melting points were determined with a capillary apparatus and uncorrected. NMR spectra were recorded on a 300 MHz spectrometer with chemical shift values reported in δ units (ppm) relative to an internal standard (TMS). IR spectra were obtained on a Varian 640- IR spectrophotometer. Mass spectra were recorded under electron ionization (EI). Thin–layer chromatography (TLC) analyses were performed using precoated silica gel plates. The open-bed chromatography was carried out on silica gel (70-230 mesh, Merck) using gravity flow. The column was packed with slurries made from the elution solvent.
General Procedure for the Synthesis of Alkyl/aryl 4,5- dichloro-6-oxopyridazine-1(6H)-carboxylate 3. To a solution of 4,5-dichloropyridazin-3(2 H )-one ( 1 , 3.0 mmol) and Et 3 N (3.6 mmol) in CH 2 Cl 2 (30 mL) was added dropwise the appropriate alkyl/aryl chloroformate ( 2 , 3.9 mmol) and the mixture was stirred for 10 min at 5 ℃ ( Scheme 1 ). The reaction mixture was washed using water (5 × 50 mL). The organic layer was dried over anhydrous magnesium sulfate, and then evaporated under reduced pressure. The resulting residue was recrystallized from THF/ n -hexane (1:3, v/v) to give the product 3 .
Phenyl 4,5-Dichloro-6-oxopyridazine-1(6H)-carboxylate (3a): 17 Yield: 787 mg, 92%; white solid; mp 140 ℃ (lit. mp 140 °C); IR (KBr): 3074, 3043, 1793, 1681, 1602, 1483, 1272, 1188, 1070, 948, 877, 750 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.33-7.41 (m, 3H), 7.50-7.56 (m, 2H), 8.38 (s, 1H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 13.9, 66.3, 136.1, 136.7, 136.9, 150.6, 154.3; HRMS (EI) m/z : [M] + calcd for C 7 H 6 Cl 2 N 2 O 3 : 235.9755; Found: 235.9758.
Ethyl 4,5-Dichloro-6-oxopyridazine-1(6H)-carboxylate (3b): Yield: 704 mg, 99%; white solid; mp 78-79 ℃; IR (KBr): 3061, 1783, 1683, 1603, 1242 1140, 945, 883, 757 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.46 (t, 3H, J = 7.1 Hz), 4.55 (q, 2H, J = 7.1 Hz), 7.84 (s, 1H); 13 C NMR (75 MHz, CDCl 3 ) δ 13.95, 66.25, 136.13, 136.70, 136.94, 150.69, 154.34; HRMS (EI) m/z : [M] + calcd for C 7 H 6 Cl 2 N 2 O 3 : 235.9755; Found: m/z 235.9758.
Methyl 4,5-Dichloro-6-oxopyridazine-1(6H)-carboxylate (3c): Yield: 616 mg, 92%; white solid; mp 112 ℃; IR (KBr): 3058, 3037, 2957, 1761, 1695, 1599, 1529, 1439, 1260, 1238, 1192, 927, 767 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 4.00 (s, 3H), 8.30 (s, 1H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 55.9, 134.7, 136.5, 137.4, 150.9, 154.0; HRMS (EI) m/z : [M] + calcd for C 6 H 4 Cl 2 N 2 O 3 : 221.9599; Found: 221.9597.
4-Chlorophenyl 4,5-Dichloro-6-oxopyridazine-1(6H)-carboxylate (3d): Yield: 824 mg, 86%; white solid; mp 143-144 ℃; IR (KBr): 3112, 3073, 2969, 2840, 1789, 1687, 1593, 1505, 1304, 1284, 1230, 1194, 1160, 1106, 1031, 947, 831, 749 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.40 (d, 2H, J = 9.0 Hz), 7.59 (d, 2H, J = 9.0 Hz), 8.39 (s, 1H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 117.3, 122.7, 123.5, 129.6, 133.7, 133.0, 137.1, 156.7, 157.4; HRMS (EI) m/z : [M] + calcd for C 11 H 5 Cl 3 N 2 O 3 : 317.9366; Found: 317.9362.
p-Tolyl 4,5-Dichloro-6-oxopyridazine-1(6H)-carboxylate (3e): Yield: 835 mg, 93%; white solid; mp 107-109 ℃; IR (KBr): 3107, 3075, 2951, 2919, 2864, 1793, 1693, 1596, 1502, 1287, 1244, 1194, 1166, 943, 748; 1 H NMR (300 MHz, DMSO- d 6 ) δ 2.35 (s, 3H), 7.21 (d, J = 8.7 Hz), 7.31 (d, J = 8.4 Hz), 8.37(s, 1H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 20.3, 120.6, 130.2, 134.8, 136.3, 137.7, 147.9, 149.1, 154.1, 156.1; HRMS (EI) m/z : [M] + calcd for C 12 H 8 Cl 2 N 2 O 3 : 297.9912; Found: 297.9913.
4-Methoxyphenyl 4,5-Dichloro-6-oxopyridazine-1(6H)- carboxylate (3f): Yield: 832 mg, 88%; white solid; mp 104- 105 ℃; IR (KBr): 3110, 3069, 3008, 2969, 2942, 2909, 2839, 1791, 1688, 1594, 1505, 1283, 1230, 1193, 1166, 1105, 1029, 944, 834, 749; 1 H NMR (300 MHz, DMSO- d 6 ) δ 3.82 (s, 3H), 6.94 (d, 2H, J = 9.2 Hz), 7.59 (d, 2H, J = 9.2 Hz), 7.90 (s, 1H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 56.0, 115.3, 122.4, 135.3, 136.9, 138.2, 144.0, 149.8, 154.7, 158.1; HRMS (EI) m/z : [M] + calcd for C 12 H 8 Cl 2 N 2 O 4 : 313.9861; Found: 313.9868.
4-Nitrophenyl 4,5-Dichloro-6-oxopyridazine-1(6H)- carboxylate (3g): Yield: 921 mg, 93%; white solid; mp 134- 135 ℃; IR (KBr): 3119, 3072, 1792, 1688, 1535, 1348, 1198, 1169, 862, 745; 1 H NMR (300 MHz, CDCl 3 ) δ 7.54 (d, 2H, J = 9.1 Hz), 7.94 (s, 1H), 8.36 (d, 2H, J = 9.1 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 122.0, 125.6, 136.3, 137.3, 137.6, 146.2, 148.4, 154.3, 154.4; HRMS (EI) m/z : [M]+ calcd for C 11 H 5 Cl 2 N 3 O 5 : 328.9606; Found: 328.9602.
General Procedure for the Synthesis of Unsymmetric and Symmetric Carbonates 5 and 6. To a solution of alcohol (or thiol) 4 (0.7 mmol) and AlCl 3 (0.7 mmol) in toluene (10 mL), compound 3 (0.7 mmol) was added. The mixture was stirred at room temperature until compound 3 was consumed, as determined by TLC. A 10% aqueous NaOH solution (50 mL) and dichloromethane (30 mL) were added to the reaction mixture with stirring. The organic layer was extracted and washed water (50 mL), and dried over anhydrous magnesium sulfate, and the solvent was evaporated under the reduced pressure. The resulting residue was transferred to an open-bed silica gel column (2.5 × 4 cm). The column was eluted with n -hexane/ethyl acetate (3:1, v/v) to isolate compound 5 and 6 and then ethyl acetate to isolate 4,5-dichloropyridazin-3(2 H )-one ( 1 ). The column fractions containing pure compound were combined and evaporated under reduced pressure to give the respective product. 4,5-Dichloropyridazin-3(2 H )-one was obtained quantitative yield and reused.
Butyl Phenyl Carbonate (5a): Yield: 110 mg, 81%; liquid; IR (KBr): 3068, 3041, 2959, 2932, 2870, 1759, 1591, 1490, 1456, 1388, 1250, 1208, 1067, 768 cm −1 ; 1 H NMR(300 MHz, CDCl 3 ) δ 0.96 (t, 3H, J = 7.3 Hz), 1.41-1.51 (m, 2H), 1.67-1.77 (m, 2H), 4.25 (t, 2H, J = 6.1 Hz), 7.16-7.25 (m, 3H), 7.34-7.40 (m, 2H); 13 C NMR (75 MHz, CDCl 3 ) δ 13.6, 18.9, 30.5, 68.6, 121.0, 125.9, 129.4, 151.1, 153.8; HRMS (EI) m/z : [M] + calcd for C 11 H 14 O 3 : 194.0943; Found: 194.0951.
Methyl Phenyl Carbonate (5b): Yield: 94 mg, 88%; liquid; IR (KBr): 3062, 3030, 2957, 2920, 1762, 1592, 1439, 1262, 1215, 1062, 941, 768, 704 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 3.88 (s, 3H), 7.16-7.26 (m, 3H), 7.35-7.41 (m, 2H); 13 C NMR (75 MHz, CDCl 3 ) δ 55.4, 121.0, 126.1, 129.5, 151.1, 154.3; HRMS (EI) calcd for C 8 H 8 O 3 : 152.0473; Found: 152.0475.
Cyclohexyl Phenyl Carbonate (5c): Yield: 139 mg, 90%; white solid; mp 58-60 ℃; IR (KBr): 3064, 3041, 2942, 2860, 1750, 1591, 1491, 1372, 1250, 1205, 1003, 938, 715 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.25-1.58 (m, 6H), 1.76-2.01 (m, 4H), 4.68-4.75 (m, 1H), 7.16-7.25 (m, 3H), 7.37 (t, 2H, J = 7.6 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 23.6, 25.2, 31.4, 77.7, 121.1, 125.8, 129.4, 151.1, 153.1; HRMS (EI) m/z : [M] + calcd for C 13 H 16 O 3 : 220.1099; Found: 220.1098.
Phenethyl Phenyl Carbonate (5d): 30 Yield: 153 mg, 90%; white solid; mp 83-85 ℃ (lit. mp 89 ℃); IR (KBr): 3109, 3081, 3058, 3033, 2969, 2938, 2895, 2868, 1753, 1492, 1260, 1210, 1077, 967, 778, 753 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 3.00 (t, 2H, J = 7.0 Hz), 4.38-4.43 (m, 2H), 7.10 - 7.35 (m, 10H); 13 C NMR (75 MHz, CDCl 3 ) δ 35.1, 69.1, 121.0, 121.2, 126.1, 126.4, 126.9, 128.7, 129.1, 129.6, 129.7, 137.1, 151.1, 151.2, 153.7; HRMS (EI) m/z : [M] + calcd for C 15 H 14 O 3 : 242.0943; Found: 242.0941.
4-Chlorophenyl Phenyl Carbonate (5e): 31 Yield: 151 mg, 87%; white solid; mp 57-59 ℃ (lit. mp 82-84 ℃); IR (KBr): 3175, 3068, 1765, 1586, 1480, 1245, 1177, 1069, 1001, 906, 755 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.32-7.61 (m, 9H), 7.42-7.47 (m, 3H); 13 C NMR (75 MHz, CDCl 3 ) δ 119.3, 120.8, 120.9, 121.7, 126.3, 126.5, 126.6, 129.6, 129.6, 130.3, 134.8, 150.9, 151.3; HRMS (EI) m/z : [M] + calcd for C 13 H 9 ClO 3 : 248.0240; Found: 248.0238.
4-Methoxyphenyl Phenyl Carbonate (5f): Yield: 136 mg, 80%; white solid; mp 39-40 ℃; IR (KBr): 3065, 3011, 2967, 2932, 2910, 2839, 1769, 1511, 1241, 1179, 1031, 832, 778 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 3.76 (s, 3H), 6.99- 7.02 (m, 2H), 7.30-7.50 (m, 7H); 13 C NMR (75 MHz, CDCl 3 ) δ 55.4, 114.5, 121.2, 122.1, 126.4, 129.6, 144.2, 150.7, 152.0, 157.3; HRMS (EI) m/z : [M] + calcd for C 14 H 12 O 4 : 244.0736; Found: 244.0736.
4-Nitrophenyl Phenyl Carbonate (5g): 32 Yield: 162 mg, 89%; white solid; mp 124-125 ℃ (lit. mp 127-128 ℃); IR (KBr): 3116, 3087, 2923, 2855, 1764, 1618, 1596, 1527, 1490, 1351, 1274, 1187, 1158, 1008, 854, 752, 686, 496 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.33-7.40 (m, 1H), 7.41-7.44 (m, 2H), 7.46-7.53 (m, 2H), 7.69-7.72 (m, 2H), 8.34-8.40 (m, 2H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 121.1, 122.6, 125.4, 126.6, 129.7, 145.3, 150.5, 150.6, 155.0; HRMS (EI) m/z : [M] + calcd for C 13 H 9 NO 5 : 259.0481; Found: 259.0481.
[1,1'-Biphenyl]-4-yl Phenyl Carbonate (5h): Yield: 175mg, 86%; white solid. mp 128-131 ℃. IR (KBr): 3062, 3034, 2921, 2853, 1763, 1487, 1241, 1206, 1183, 757, 688 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.32-7.50 (m, 10H) 7.67-7.78 (m, 3H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 121.1, 121.6, 126.4, 126.6, 127.5, 127.8, 128.9, 129.6, 138.3, 139.0, 150.0, 150.5, 151.5; HRMS (EI) m/z : [M] + calcd for C 10 H 12 O 3 : 290.0943; Found: m/z 290.0945.
p-Hydroxyphenyl Phenyl Carbonate (5i). Yield: 78 mg, 39%; liquid; IR (KBr): 3074, 3043, 1793, 1681, 1602, 1483, 1272, 1188, 1070, 948, 877, 750, 617 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 2.87 (t, 2H, J 1 = 6.6 Hz, J 2 = 6.9 Hz), 4.33 (t, 2H, J 1 = 6.9 Hz, J 2 = 6.8 Hz), 6.69-6.73 (m, 2H), 7.07 (d, 2H, J = 8.4 Hz), 7.18-7.21 (m, 2H), 7.26-7.31 (m, 1H), 7.39-7.45 (m, 2H), 9.27 (s, 1H, D 2 O exchangeable); 13 C NMR (75 MHz, DMSO- d 6 ) δ 33.3, 69.1, 115.1, 121.2, 126.0, 127.2, 129.5, 129.8, 150.6, 152.9, 155.9; HRMS (EI) m/z : [M] + calcd for C 13 H 10 O 4 : 283.9755; Found: m/z 283.9758.
O,S-Diphenyl Thiocarbonate (5j): Yield: 137 mg, 85%; white solid; mp 55 ℃; IR (KBr): 3058, 1731, 1588, 1484, 1440, 1243, 1187, 1160, 1107, 1080, 998, 742 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.26-7.33 (m, 3H), 7.42-7.51 (m, 5H), 7.65-7.68 (m, 2H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 121.8, 126.8, 127.0, 130.0, 130.1, 130.2, 130.6, 135.2, 151.2, 168.4; HRMS (EI) m/z : [M] + calcd for C 13 H 10 O 2 S: 230.0402; Found: 230.0403.
Butyl Ethyl Carbonate (5k): 33 Yield: 88 mg, 86%; liquid; IR (KBr): 2961, 2934, 2873, 1746, 1462, 1401, 1257, 1061, 1016, 934, 791 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 0.94 (t, 3H, J = 7.4 Hz), 1.26-1.48 (m, 5H), 1.60-1.69 (m, 2H), 4.10-4.22 (m, 4H); 13 C NMR (75 MHz, CDCl 3 ) δ 13.6, 14.2, 18.9, 30.6, 63.7, 67.6, 155.4; MS (EI, 70 eV) m/z : 119 [M] + (6), 118 [M-H] + (8), 91 (8), 73 (12), 63 (31), 57 (100), 56 (46).
Cyclohexyl Ethyl Carbonate (5l): 34 Yield: 101 mg, 84%; liquid; IR (KBr): 2938, 2860, 1739, 1453, 1374, 1318, 1253, 1175, 1121, 1098, 1034, 1013, 939, 896, 792 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.29-1.51 (m, 9H), 1.75 (s, 2H), 1.92 (s, 2H), 4.15-4.19 (m, 2H), 4.55-4.61 (m, 1H); 13 C NMR (75 MHz, CDCl 3 ) δ 14.2, 23.6, 23.7, 24.7, 25.2, 31.5, 31.6, 63.5, 154.6; MS (EI, 70 eV) m/z: 99 [M-CH 3 CH 2 CO] + (48), 91 (97), 83 [M-CH3CH2OCO2] + (69), 82 [M-CH 3 CH 2 OCO 2 - H] + (83), 81 (25), 67 (100), 63 (43), 57 (71), 55 (67).
Ethyl Phenethyl Carbonate (5m). Yield: 122 mg, 84%; liquid; IR (KBr): 3063, 3028, 2982, 2910, 1744, 1456, 1400, 1258, 1201, 1088, 1005, 790, 749, 700 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.27 (t, 3H, J = 7.1 Hz), 2.96 (t, 2H, J = 6.8 Hz), 4.16 (q, 2H, J = 7.1 Hz), 4.32 (t, 2H, J = 7.1 Hz), 7.21- 7.31 (m, 5H); 13 C NMR (75 MHz, CDCl 3 ) δ 14.2, 35.2, 63.9, 68.1, 126.6, 128.5, 128.9, 137.3, 155.1; HRMS (EI) m/z : [M] + calcd for C 11 H 14 O 3 : 194.0943; Found: 194.0969.
4-Chlorophenyl Ethyl Carbonate (5n): Yield: 115 mg, 82%; liquid; IR (KBr): 3075, 2986, 2938, 1763, 1590, 1474, 1429, 1369, 1247, 1215, 1063, 994, 860, 780 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 1.30 (t, 3H, J = 7.1 Hz), 4.26 (q, 2H, J = 7.1 Hz), 7.23-7.27 (m, 1H), 7.36-7.39 (m, 1H), 7.44- 7.50 (m, 2H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 13.9, 64.8, 120.2, 121.8, 126.2, 130.9, 133.3, 151.3, 152.5; HRMS (EI) m/z : [M] + calcd for C 9 H 9 ClO 3 : 200.0240; Found: 200.0242.
Ethyl 4-Methoxyphenyl Carbonate (5o): Yield: 114 mg, 83%; liquid; IR (KBr): 3063, 2984, 2901, 1755, 1488, 1374, 1307, 1259, 1222, 1174, 1090, 972, 841, 762, 730 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.35 (t, 3H, J = 7.1 Hz), 3.75 (s, 3H), 4.28 (q, 2H, J = 7.1 Hz), 6.83-6.89 (m, 2H), 7.05-7.11 (m, 2H); 13 C NMR (75 MHz, CDCl 3 ) δ 14.1, 55.5, 64.6, 114.4, 121.9, 144.7, 154.0, 157.3; HRMS (EI) m/z : [M] + calcd for C 10 H 12 O 4 : 196.0736; Found: 196.0741.
Ethyl 4-Nitrophenyl Carbonate (5p): 35 Yield: 124 mg, 84%; white solid; mp 75-76 ℃ (lit. mp 67-68 ℃); IR (KBr): 3118, 3085, 3004, 2923, 2855, 1758, 1521, 1378, 1352, 1283, 1230, 1001, 857 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 1.31 (t, 3H, J = 7.1 Hz), 4.30 (q, 2H, J = 7.1 Hz), 7.54- 7.60 (m, 2H), 8.30-8.34 (m, 2H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 14.3, 65.7, 123.0, 125.8, 145.6, 152.4, 155.7; HRMS (EI) m/z : [M] + calcd. for C 9 H 9 NO 5 ; 211.0481; Found: 211.0481.
[1,1'-Biphenyl]-4-yl Ethyl Carbonate (5q): 36 Yield: 146 mg, 86%; white solid; mp 75-76 ℃ (lit. mp 74-74.5 ℃); IR (KBr): 3063, 2984, 1755, 1488, 1374, 1307, 1259, 1222, 1090, 1055, 973, 842, 762, 730 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 1.31 (t, 3H, J = 6.0 Hz), 4.28 (q, 2H, J = 6.0 Hz), 7.32-7.48 (m, 5H), 7.66-7.73 (m, 4H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 14.4, 65.1, 122.2, 127.1, 128.0, 128.3, 129.4, 138.5, 139.7, 150.7, 153.4; HRMS (EI) m/z : [M] + calcd for C 15 H 14 O 3 : 242.0943; Found: 242.0941.
Diphenyl Carbonate (6a): 37 Yield: 141 mg, 94%; white solid; mp 75-76 ℃ (lit. mp 77-78 ℃); IR (KBr): 3058, 1773, 1592, 1490, 1255, 1233, 1182, 1071, 1016, 996, 751 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.30 - 7.35 (m, 2H), 7.40- 7.51 (m, 8H); 13 C NMR (75 MHz, DMSO- d 6 ) δ 121.2, 126.4, 129.7, 150.7, 151.7; HRMS (EI) m/z : [M] + calcd for C 13 H 10 O 3 : 214.0630; Found: 214.0634.
Diethyl Carbonate (6b): 33 Yield: 67 mg, 81%; liquid; IR (KBr): 2987, 2940, 2913, 1748, 1470, 1408, 1375, 1271, 1093, 1022, 855, 792 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 1.30 (t, 6H, J = 7.2 Hz), 4.19 (q, 4H, J = 7.2 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 13.9, 63.4, 154.9; MS (EI, 70 eV) m/z : 91 [M+H] + (61), 90 [M]+ (3), 75 (3), 63 (20), 59 (6), 45 (100), 31 (58), 30 (3), 29 (90), 28 (13), 27 (28).
Dimethyl Carbonate (6c): Yield: 28 mg, 45%; liquid; IR (KBr): 3009, 2967, 2928, 2861, 1774, 1457, 1295, 989 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 3.79 (s, 6H); 13 C NMR (75 MHz, CDCl 3 ) δ 54.5, 156.2; HRMS (EI) m/z : [M] + calcd for C 3 H 6 O 3 : 90.0317; Found: 90.0314.
Bis(4-chlorophenyl) Carbonate (6d): 38 Yield: 187 mg, 94%; white solid; mp 146-147 ℃ (lit. 144-146 ℃); IR (KBr): 3102, 3077, 1769, 1491, 1289, 1264, 1089, 822, 783 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 7.20-7.23 (m, 4H), δ 7.20-7.23 (m, 4H), 7.37-7.40 (m, 4H); 13 C NMR (75 MHz, CDCl 3 ) δ 122.2, 129.7, 131.9, 149.3, 151.5; HRMS (EI) m/z : [M] + calcd for C 13 H 8 Cl 2 O 3 : 281.9850; Found: 281.9851.
Di-p-tolyl Carbonate (6e): 39 Yield: 158 mg, 94%; white solid; mp 109-110 ℃ (lit. mp 111-112 ℃); IR (KBr): 3039, 2923, 2858, 1772, 1507, 1240, 1177, 1156, 1011, 886, 812, 769 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 2.34 (s, 6H), 7.12 - 7.20 (m, 8H); 13 C NMR (75 MHz, CDCl 3 ) δ 20.8, 120.6, 130.0, 135.9, 148.9, 152.4; HRMS (EI) m/z : [M] + calcd for C 15 H 14 O 3 : 242.0943; Found: 242.0945.
Bis(4-methoxyphenyl) Carbonate (6f). 40 Yield: 171 mg, 89%; white solid; mp 94-95 ℃ (lit. mp 96-97 ℃); IR (KBr): 3110, 3066, 3027, 2971, 2933, 2838, 1768, 1601, 1508, 1458, 1305, 1274, 1238, 1176, 1099, 1024, 826, 775 cm −1 ; 1 H NMR (300 MHz, CDCl 3 ) δ 3.80 (s, 6H), 6.90 (d, 4H, J = 9.0 Hz), 7.18 (d, 4H, J = 9.0 Hz); 13 C NMR (75 MHz, CDCl 3 ) δ 55.6, 114.5, 121.7, 144.6, 152.8, 157.5; HRMS (EI) m/z : [M] + calcd for C 15 H 14 O 5 : 274.0841; Found: m/z 274.0840.
Bis(4-nitrophenyl) Carbonate (6g): 40 Yield: 139 mg, 70%; white solid; mp 137-139 ℃ (lit. mp 138-140 ℃); IR (KBr): 3114, 3079, 1765, 1617, 1526, 1360, 1371, 1245, 1194, 1161, 1106, 1009, 891, 859, 745 cm −1 ; 1 H NMR (300 MHz, DMSO- d 6 ) δ 7.50 (d, 4H, J = 9.1 Hz), 8.34 (d, 4H, J = 9.1 Hz); 13 C NMR (75 MHz, DMSO- d 6 ) δ 121.6, 125.3, 125.5, 128.2, 129.0, 145.9, 150.0, 154.8; HRMS (EI) m/z : [M] + calcd for C 13 H 8 N 2 O 7 : 304.0332; Found: m/z 304.0331.
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012R1A1A2001162).
References
Shaikh A.-A. G. , Sivaram S. 1996 Chem. Rev. 96 951 - 976    DOI : 10.1021/cr950067i
Arico F. , Tundo P. 2010 Russian. Chem. Rev. 796 (6) 479 - 489
Schaffner B. , Schaffner S. , Verevkin S. P. , Borner A. 2010 Chem. Rev. 110 4554 - 4581    DOI : 10.1021/cr900393d
Schäffner B. , Verevkin S. P. , Borner A. 2009 Chem. Unserer Zeit 43 12 - 21    DOI : 10.1002/ciuz.200900468
Chankeshwara S. V. 2008 Synlett 624 - 625
Shieh W.-C. , Dell S. Repič 2002 J. Org. Chem. 67 2188 - 2191    DOI : 10.1021/jo011036s
Parrish J. P. , Salvatore R. N. , Jung K. W. 2000 Tetrahedron 56 8207 - 8237    DOI : 10.1016/S0040-4020(00)00671-2
Delogu Cotarca , Nardelli P. , Šunjic A. 1996 Synthesis 553 - 576
Eckert H. , Nesl A. , Gilchrist T. L. 1995 Comprehensive Organic Functional Group Transformations Synthesis: Carbon with Three or Four Attached Heteroatoms 460 - 470
Jung K. W. , Nagle A. S. , Knight J. G. 2005 Science of Synthesis Compounds with Four Carbon-Heteroatom Bonds 383 - 395
Tundo P. , Selva M. 2002 Acc. Chem. Res. 35 706 - 716    DOI : 10.1021/ar010076f
Romano U. , Tesei R. , Massi M. M. , Rebora P. 1980 Ind. Eng. Chem. Prod. Res. Dev. 19 396 - 403
Ball P. , Fullmann H. , Heitz W. 1980 Angew. Chem. Int. Ed. Engl. 19 (9) 718 - 720    DOI : 10.1002/anie.198007181
Lee H. G. , Kim M. J. , Park S. E. , Kim J. J. , Kim B. R. , Lee S. G. , Yoon Y. J. 2009 Synlett 2809 - 2814
Kang Y. J. , Chung H.-A. , Kim J. J. , Yoon Y. J. 2002 Synthesis 733 - 738
Park Y. D. , Kim J. J. , Chung H.-A. , Kweon D. H. , Cho S. D. , Lee S. G. , Yoon Y. J. 2003 Synthesis 560 - 564
Kim J. J. , Park Y. D. , Cho S. D. , Kim H. K. , Kang Y. J. , Lee S. G. , Falck J. R. , Shiro M. , Yoon Y. J. 2004 Bull. Korean Chem. Soc. 25 1273 - 1276    DOI : 10.5012/bkcs.2004.25.8.1273
Lee S. G. , Kim J. J. , Kim H. K. , Kweon D. H. , Kang Y. J. , Cho S. D. , Kim S. K. , Yoon Y. J. 2004 Curr. Org. Chem. 8 1463 - 1480    DOI : 10.2174/1385272043369818
Park Y. D. , Kim J. J. , Kim H. K. , Cho S. D. , Kang Y. J. , Park K. H. , Lee S. G. , Yoon Y. J. 2005 Syn. Commun. 35 371 - 378    DOI : 10.1081/SCC-200048939
Kim J. J. , Park Y. D. , Kim H. K. , Cho S. D. , Kim J. K. , Lee S. G. , Yoon Y. J. 2005 Syn. Commun. 35 731 - 738    DOI : 10.1081/SCC-200050375
Kim S. K. , Kweon D. H. , Cho S. D. , Kang Y. J. , Park K. H. , Lee S. G. , Yoon Y. J. 2005 J. Heterocyclic Chem. 42 353 - 359    DOI : 10.1002/jhet.5570420302
Lee H. G. , Kim M. J. , Lee I. H. , Kim E. J. , Kim B. R. , Yoon Y. J. 2010 Bull. Korean Chem. Soc. 31 1061 - 1063    DOI : 10.5012/bkcs.2010.31.04.1061
Chung H.-A , Kim J. J. , Cho S. D. , Lee S. G. , Yoon Y. J. 2002 J. Heterocyclic Chem. 39 685 - 689    DOI : 10.1002/jhet.5570390412
Cho S. D. , Park Y. D. , Kim J. J. , Joo W. H. , Shiro M. , Esser L. , Falck J. R. , Ahn C. , Shin D. S. , Yoon Y. J. 2004 Tetrahedron 60 3763 - 3773    DOI : 10.1016/j.tet.2004.03.011
Young W. G. , Hartung W. , Crossly F. 1936 J. Am. Chem. Soc. 58 100 - 102    DOI : 10.1021/ja01292a033
Sabetay S. , Schving P. 1928 Bull. Soc. Chim. Fr. 43 1341 - 1345
Pinto V. , Norberto F. , Pamplona T. , Fernandez M. T. , Duarte M. F. 2006 Rapid. Commun. Mass. Sp. 20 (15) 2309 - 2316    DOI : 10.1002/rcm.2588
Dahl S. , Kaplan A. M. 1960 J. Am. Leather. Chem. As. 55 480 - 500
Zhang L. , Niu D. , Zhang K. , Zhang G. , Luo Y. , Lu J. 2008 Green Chem. 10 202 - 206    DOI : 10.1039/b711981j
Selva M. , Noè M. , Perosa A. , Gottardo M. 2012 Org. Biomol. Chem. 10 6569 - 6578    DOI : 10.1039/c2ob25447f
Gravel C. , Lapierre D. , Labelle J. , Keillor J. W. 2007 Can. J. Chem. 85 (3) 164 - 174    DOI : 10.1139/v07-011
Smith G. G. , Jones D. A. K. , Taylor R. 1963 J. Org. Chem. 28 (12) 3547 - 3550    DOI : 10.1021/jo01047a504
Suzuki H. , Nishioka Y. 1989 Bull. Chem. Soc. Jpn. 62 (6) 2117 - 2118    DOI : 10.1246/bcsj.62.2117
Martin D. , Weise A. 1966 Chem. Ber. 99 (10) 3367 - 3383    DOI : 10.1002/cber.19660991043
Martin D. , Rackow S. 1965 Chem. Ber. 98 (11) 3662 - 3671    DOI : 10.1002/cber.19650981134
Iwakura Y. , Nabeya A. 1960 J. Org. Chem. 25 1118 - 1123    DOI : 10.1021/jo01077a013