Advanced
Non-enzymatic Self-acetylation of α-Cyclosophorotridecaoses Isolated from Ralstonia solanacearum: Mass Spectrometric Study
Non-enzymatic Self-acetylation of α-Cyclosophorotridecaoses Isolated from Ralstonia solanacearum: Mass Spectrometric Study
Bulletin of the Korean Chemical Society. 2014. Aug, 35(8): 2585-2588
Copyright © 2014, Korea Chemical Society
  • Received : April 29, 2014
  • Accepted : May 15, 2014
  • Published : August 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Eunae Cho
Sanghoo Lee
Department of Bioanalysis, Seoul Medical Science Institute, Seoul 140-809, Korea
Seunho Jung

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
Bacterial Strains and Culture Conditions. R. solanacearum KACC 10698 was grown in a TGY medium at 24 ℃ with agitation. S. meliloti was cultured in a GMS medium to late logarithmic phase at 30 ℃.
Preparation of α-C13. α-C13 produced by R. solanacearum KACC 10698 was purified as described in our previous report. 14 The acetylated and unsubstituted forms of α-C13 were treated with 0.1 M KOH at 37 ℃ for 1 h. The alkaline-treated materials were neutralized and desalted on a Bio-Gel P-4 column. The final unsubstituted α-C13 was confirmed with NMR spectroscopy and MALDI-TOF MS.
Preparatin of L13 from α-C13. L13 were prepared by acid hydrolysis (0.08 M trifluoroacetic acid, 100 ℃, 1 h) and semi-preparative high-performance liquid chromatography (HPLC). After the hydrolysis, the hydrolysates were evaporated to dryness to remove trifluoroacetic acid, and desalted by using a Sephadex G-10 column. 25 The desalted material was subjected to semi-preparative HPLC (Agilent Technologies 1200 series) on a C18 column (5 µm, 250 × 9.4 mm; Eclipse XDB-C18) at 15 ℃, and detected with an RI detector using 99:1 (v/v) water:methanol as the solvent system at a flow rate of 1 mL/min. The product was analyzed with MALDI-TOF MS.
Purification of Cys from S. meliloti. The isolation and purification of Cys were carried out as previously described. 26
Reaction Condition. Reactions were performed in a minimal reaction buffer containing 300 mM NaCl, 5 mM MnCl 2 , and 20 mM Tris-chloride buffer (pH 8.3) at 30 ℃ for 1 h. 27 The concentrations of both substrates, coenzyme A (acetyl and succinyl), and α-C13 were 500 µM. After 1 h, the reaction mixture was lyophilized and the mass was detected with MALDI-TOF MS.
MALDI-TOF MS Analysis. The reaction mixture was first analyzed with MALDI-TOF MS using 2,5-dihydroxybenzoic acid as the matrix with a MALDI-TOF mass spectrometer (Voyager-DE TM STR BioSpectrometry; Per-Septive Biosystems; Framingham, MA, USA) in positive ion mode.
ESI MS/MS Analysis. For detailed structural analysis, the ESI MS/MS technique was used. The reaction mixtures described above were desalted with Sephadex G-10 and lyophilized. The materials were dissolved in a 1:1 solution of water and MeOH and directly infused into the ESI source at a rate of 1 mL/min. The low-energy CAD experiments were carried out on an API 4000 TM triple quadrupole LC/ MS/MS system (Applied Biosystems; Foster City, CA, USA) equipped with a turbo ESI source. Ionization was performed in positive ion mode and nitrogen was used as the drying and nebulizing gas. The spray voltage was set at 4500 eV in product ion scan mode (MS2) and the scan range was m/z 1600 to 2500. The applied CEs were 50, 55, and 70 eV.
Acknowledgements
This work is supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-0024008) and supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0006686). SDG.
References
Bohin J.-P. 2000 FEMS Microbiol. Lett. 186 11 -    DOI : 10.1111/j.1574-6968.2000.tb09075.x
Talaga P. , Wieruszeski J. M. , Hillenkamp F. , Tsuyumu S. , Lippens G. , Bohin J. P. 1996 J. Bacteriol. 178 2263 -
Bhagwat A. A. , Mithofer A. , Pfeffer P. E. , Kraus C. , Spickers N. , Hotchkiss A. , Ebel J. , Keister D. L. 1999 Plant Physiol. 119 1057 -    DOI : 10.1104/pp.119.3.1057
Breedveld M. W. , Hadley J. A. , Miller K. J. 1995 J. Bacteriol. 177 6346 -
Talaga P. , Cogez V. , Wieruszeski J. M. , Stahl B. , Lemoine J. , Lippens G. , Bohin J. P. 2002 Eur. J. Biochem. 269 2464 - 2472    DOI : 10.1046/j.1432-1033.2002.02906.x
York W. S. 1995 Carbohydr. Res. 278 205 -    DOI : 10.1016/0008-6215(95)00260-X
Lippens G. , Wieruszeski J. M. , Horvath D. , Talaga P. , Bohin J. P. 1998 J. Am. Chem. Soc. 120 170 -    DOI : 10.1021/ja970960u
Lippens G. , Wieruszeski J. M. , Talaga P. , Bohin J. P. 1996 Biomol. NMR. 8 311 -    DOI : 10.1007/BF00410329
Rolin D. B. , Pfeffer P. E. , Osman S. F. , Szwergold B. S. , Kappler F. , Benesi A. J. 1992 Biochem. Biophys. Acta 1116 215 -    DOI : 10.1016/0304-4165(92)90014-L
Roset M. S. , Ciocchini A. E. , Ugalde R. A. , Inon de Iannino N. J. 2006 Bacteriol. 188 5003 -    DOI : 10.1128/JB.00086-06
Cho E. , Jeon Y. , Jung S. 2009 Carbohydr. Res. 344 996 -    DOI : 10.1016/j.carres.2009.03.015
Cho E. , Lee S. , Jung S. 2009 Bull. Korean Chem. Soc. 30 2433 -    DOI : 10.5012/bkcs.2009.30.10.2433
Breedveld M. W. , Benesi A. J. , Marco M. L. , Miller K. 1995 J. Appl. Environ. Microbiol. 61 1045 -
Cho E. , Lee S. , Jung S. 2008 Carbohydr. Res. 343 912 -    DOI : 10.1016/j.carres.2008.01.023
Vetting M. W. , de Carvalho L. P. , Yu M. , Hegde S. S. , Magnet S. , Roderick S. L. , Blanchard J. S. 2005 Arch. Biochem. Biophys. 433 212 -    DOI : 10.1016/j.abb.2004.09.003
Goldberg D. E. , Rumrey M. K. , Kennedy E. P. 1981 Proc. Natl. Acad. Sci. USA 78 5513 -    DOI : 10.1073/pnas.78.9.5513
Lacroix J. M. , Lanfroy E. , Cogez V. , Lequette Y. , Bohin A. , Bohin J. P. 1999 J. Bacteriol. 181 3626 -
Lee S. , Jung S. 2004 Carbohydr. Res. 339 461 -    DOI : 10.1016/j.carres.2003.11.004
Park H. , Kang L. , Jung S. 2008 Bull. Korean Chem. Soc. 29 228 -    DOI : 10.5012/bkcs.2008.29.1.228
Cho E. , Lee S. , Jung S. 2007 Carbohydr. Polym. 70 174 -    DOI : 10.1016/j.carbpol.2007.03.013
Lee S. , Cho E. , Kwon C. , Jung S. 2007 Carbohydr. Res. 342 2682 -    DOI : 10.1016/j.carres.2007.07.006
Lee S. , Kwon S. , Kwon C. , Jung S. 2009 Carbohydr. Res. 344 1127 -    DOI : 10.1016/j.carres.2009.04.003
Chen G. , Pramanik B. N. , Liu Y.-H. , Mirza U. A. 2007 J. Mass Spectrom. 42 279 -    DOI : 10.1002/jms.1184
Hobot J. A. , Carlemalin E. , Villiger W. , Kellenberger E. 1984 J. Bacteriol. 160 143 -
Zevenhuizen L. P. , van Veldhuizen A. , Fokkens R. H. 1990 Antonie Leeuwenhoek 57 173 -    DOI : 10.1007/BF00403952
Jeon Y. , Kwon C. , Cho E. , Jung S. 2010 Carbohydr. Res. 345 2408 -    DOI : 10.1016/j.carres.2010.08.009
Seelig B. , Jäschke A. 1999 Chem. Biol. 6 167 -    DOI : 10.1016/S1074-5521(99)89008-5