Advanced
Photoinduced Phase Transition of Azobenzene-Coupled Benzenetricarboxamide
Photoinduced Phase Transition of Azobenzene-Coupled Benzenetricarboxamide
Bulletin of the Korean Chemical Society. 2014. Aug, 35(8): 2563-2566
Copyright © 2014, Korea Chemical Society
  • Received : March 26, 2014
  • Accepted : April 16, 2014
  • Published : August 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Yashwardhan R. Malpani
Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon 305-355, Korea
Seungwhan Oh
Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea.
Sumi Lee
Department of Chemical Engineering, Hanyang University, Seoul 133-791, Korea.
Young-Sik Jung
Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, Daejeon 305-355, Korea
Jong-Man Kim
Institute of Nano Science and Technology, Hanyang University, Seoul 133-791, Korea

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
Materials and Instruments. Unless otherwise stated, all commercially available solvents and reagents were used without further purification. Melting points were recorded on Mettler Toledo MP50 apparatus and are uncorrected. IR spectra were recorded on an FT-IR Smiths Identify IR and the values are mentioned in cm −1 . The 1 H-NMR and 13 C-NMR was recorded on Varian and Bruker NMR spectrophotometer, using commercial NMR solvents obtained from Aldrich with TMS as internal standard and chemical shifts are mentioned in δ ppm scale. The Mass spectra were obtained over Varian 1200L quadrupole MS (EI) spectrophotometer.
4-Bromophenylazoaniline (C12H10BrN3). To a dichloromethane solution (50 mL) containing para-bromoaniline (2.50 g, 14.5 mmol) was added oxone (17.86 g, 29.0 mmol) in water (150 mL). The mixture was kept at room temperature for 4 h and then layers were separated. The aqueous layer was extracted with dichloromethane (100 mL × 3). Combined organic layer was washed with dil. HCl (1 N, 100 mL), sat. NaHCO 3 (100 mL), water (100 mL) and brine (100 mL). Drying over anhydrous sodium sulfate was followed by concentration to yield the crude nitroso intermediate (quant.). The crude was then dissolved in glacial AcOH (40 mL) immediately and to this solution was added 1,4-phenylenediamine (1.57 g, 14.5 mmol) in dry DMSO (10 mL). The resultant mixture was stirred at room temperature for two days and then concentrated to remove acetic acid. This crude was taken up in brine (500 mL) and extracted with ethyl acetate (150 mL × 5). The combined organic layer was washed with 10% NaCl solution (100 mL × 2), dried over anhydrous sodium sulfate, and concentrated to give the crude mass which was purified over silica gel column chromatography (20%EA in hexanes) to yield the pure product as brown solid. Yield: 2.40 g (60%); mp 112-115 ℃; 1 H-NMR (300 MHz, CDCl 3 ) δ 4.09 (br, 2H, NH 2 ), 6.74 (d, J = 8.7 Hz, 2H, ArH), 7.60 (d, J = 8.7 Hz, 2H, ArH), 7.72 (d, J = 8.7 Hz, 2H, ArH), 7.80 (d, J = 8.7 Hz, 2H, ArH). HRMS (EI): calculated 275.0058, found 275.0049. IR (neat): 3400, 1625, 1594, 1572, 1461, 1302, 1137, 1066, 1002, 826, 737 cm −1 .
N1,N3,N5-Tris(4-((E)-(4-bromophenyl)diazenyl)phenyl) benzene-1,3,5-tricarboxamide (C45H30Br3N9O3). To a solution of benzene-1,3,5-tricarbonyl trichloride (1.00 g, 3.8 mmol) in dry THF (40 mL) was added triethylamine (3.15 mL, 22.6 mmol) and 4-bromophenylazoaniline (3.44 g, 12.4 mmol). The resulting mixture was stirred under a reflux condition for 2 days. The precipitates formed were removed and the filtrate was concentrated in vacuo . The residue was re-dissolved in THF and slowly precipitated with large excess of MeOH. The precipitate obtained was filtered off and washed with MeOH (50 mL) and dichloromethane (20 mL) to yield the product as yellow powder. Yield: 3.70 g (95%); mp > 300 ℃. 1 H-NMR (300 MHz, DMSO- d 6 ) δ 7.79-7.86 (m, 12H, ArH), 8.00 (d, J = 9.0 Hz, 6H, ArH), 8.12 (d, J = 9.0 Hz, 6H, ArH), 8.18 (s, 3H, ArH), 11.06 (s, 3H, NH); 13 C-NMR (temp. 90 ℃, 125 MHz, DMSO- d 6 ) δ 120.4, 123.0, 123.6, 123.7, 129.5, 131.9, 135.0, 141.7, 148.0, 150.9, 164.3. HRMS (ESI): calculated 979.9943 (M − H + ), found 979.9895 (M − H + ). IR (neat): 3375, 3085, 1671, 1594, 1525, 1500, 1404, 1304, 1247, 1151, 1065, 1005, 837, 727 cm −1 .
Acknowledgements
The authors thank the National Research Foundation of Korea for financial support through the Basic Science Research Program (2012R1A6A1029029). The authors also thank Korea Research Institute of Chemical Technology (KK-1303-A0).
References
Cantekin S. , de Greef T. F. A. , Palmans A. R. A. 2012 Chem. Soc. Rev. 41 6125 - 6137    DOI : 10.1039/c2cs35156k
Stals P. J. M. , Haveman J. F. , Palmans A. R. A. , Schenning A. P. H. J. 2009 J. Chem. Educ. 86 230 - 233    DOI : 10.1021/ed086p230
Roosma J. , Mes T. , Leclere P. , Palmans A. R. A. , Meijer E. W. 2008 J. Am. Chem. Soc. 130 1120 - 1121    DOI : 10.1021/ja0774764
van Gorp J. J. , Vekemans J. A. J. M. , Meijer E. W. 2002 J. Am. Chem. Soc. 124 14759 - 14769    DOI : 10.1021/ja020984n
Bose P. P. , Drew M. G. B. , Das A. K. , Banerjee A. 2006 Chem. Commun. 3196 - 3198
Shikata T. , Ogata D. , Hanabusa K. 2004 J. Phys. Chem. B 108 508 - 514    DOI : 10.1021/jp030510q
Ryu S. Y. , Kim S. , Seo J. , Kim Y.-W. , Kwon O.-H. , Jang D.-J. , Park S. Y. 2004 Chem. Commun. 70 - 71
Lee S. J. , Park C. R. , Chang J. Y. 2004 Langmuir 20 9513 - 9519    DOI : 10.1021/la0493417
Lewis F. D. , Long T. M. , Stern C. L. , Liu W. 2003 J. Phys. Chem. A 107 3254 - 3262    DOI : 10.1021/jp0264937
Lightfoot M. P. , Mair F. S. , Pritchard R. G. , Warren J. E. 1999 Chem. Commun. 1945 - 1946
Paraschiv I. , Giesbers M. , van Lagen B. , Grozema F. C. , Abellon R. D. , Siebbeles L. D. A. , Marcelis A. T. M. , Zuilhof H. , Sudholter E. J. R. 2006 Chem. Matter. 18 968 - 974    DOI : 10.1021/cm052221f
Masuda M. , Jonkheijm P. , Sijbesma R. P. , Meijer E. W. 2003 J. Am. Chem. Soc. 125 15935 - 15940    DOI : 10.1021/ja037927u
Lee S. , Lee J. S. , Lee C. H. , Jung Y. S. , Kim J. M. 2011 Langmuir 27 1560 - 1564    DOI : 10.1021/la104568c
Lee S. , Oh S. , Lee J. , Malpani Y. , Jung Y. S. , Kang B. , Lee J. Y. , Ozasa K. , Isoshima T. , Lee S. Y. , Hara M. , Hashizume D. , Kim J. M. 2013 Langmuir 29 5869 - 5877    DOI : 10.1021/la400159m
Dorwald F. Z 2012 Lead Optimization for Medicinal Chemists Strauss GmbH Morlenbach 49 - 57
Pliska V. , Testa B. , van de Waterbeemd H. 1996 Methods and Principles in Medicinal Chemistry VCH Weinheim, New York, Basel, Cambridge, Tokyo Lipophilicity in Drug Action and Toxicology
Thomas G 2000 Medicinal Chemistry an Introduction 2nd ed. John Wiley & Sons West Sussex, UK
Priewisch B. , Ruck-Braun K. 2005 J. Org. Chem. 70 2350 - 2352    DOI : 10.1021/jo048544x
Qu Y. , Hua J. , Tian H. 2010 Org. Lett. 12 3320 - 3323    DOI : 10.1021/ol101081m