Advanced
Improvement of Signal Stability by a Cyclone-type Particle Separator for Ceramic Analysis using Laser Ablation ICP-MS
Improvement of Signal Stability by a Cyclone-type Particle Separator for Ceramic Analysis using Laser Ablation ICP-MS
Bulletin of the Korean Chemical Society. 2014. Aug, 35(8): 2555-2558
Copyright © 2014, Korea Chemical Society
  • Received : March 13, 2014
  • Accepted : April 11, 2014
  • Published : August 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Jin Sook Lee
H. B. Lim

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
Four ceramic powders with different particle size were prepared. ITO and MgO powders, spotlighted ceramics as a new display material, were prepared by sol-gel method in the size of 50 nm and 1 mm, respectively. The densities of ITO and MgO were measured to be 2.12 and 0.95 g/cm 3 , respectively. Two alumina powders, AES12 with high purity and AL-41 with low soda, were purchased from Sumitomo (Japan). The physical properties of the ceramic powders were listed in Table 1
Physical properties of ceramic powder samples
PPT Slide
Lager Image
Physical properties of ceramic powder samples
For laser ablation, the powders were pressed with 1,500 pascal in the diameter of 40 mm using a press (HERZOG PT 40/2D, GmbH Co., Germany). The prepared pellets were ablated and analyzed semi-quantitatively using the laser ablation system (LSX-100, Cetac, Inc., Omaha) equipped with a frequency-quadrupled neodymium-doped yttrium aluminum garnet (Nd:YAG) laser operated under Q-switched mode. The ablated samples were analyzed by ICP-MS (Elan 6000, Perkin-Elmer Sciex, Concord). Typical operating conditions of the laser ablation ICP-MS system were summarized in table 2. The flow rate of Ar and He gas was adjusted to 1.0 L/min and 0.9 L/min, respectively.
Instrumental operating conditions of ICP-MS and laser ablation system
PPT Slide
Lager Image
Instrumental operating conditions of ICP-MS and laser ablation system
References
Becker J. S. 2002 Spectrochim. Acta Part B 57 1805 -    DOI : 10.1016/S0584-8547(02)00213-6
Zhou H. , Wang Z. , Zhu Y. , Li Q. , Zou H.-J. , Qu H.-Y. , Chen Y.-R. , Du Y.-P. 2013 Spectrochim. Acta Part B 90 55 -    DOI : 10.1016/j.sab.2013.10.003
Gunther D. , Hattendorf B. 2005 Trends in Anal. Chem. 24 255 -    DOI : 10.1016/j.trac.2004.11.017
Bleiner D. , Lienemann P. , Vonmont H. 2005 Talanta 65 1286 -    DOI : 10.1016/j.talanta.2004.09.004
Davide B. , Peter L. , Heinz V. 2005 Talanta 65 1286 -    DOI : 10.1016/j.talanta.2004.09.004
Guillong M. , Kuhn H. R. , Gunther D. 2003 Spectrochim. Acta Part B 58 221 -    DOI : 10.1016/S0584-8547(02)00258-6
Weis P. , Beck H. P. , Gunther D. 2005 Anal. Bioanal. Chem. 381 212 -    DOI : 10.1007/s00216-004-2947-9
Kuhn H. R. , Gunther D. 2003 Anal. Chem. 75 747 -    DOI : 10.1021/ac0259919
Koch J. , Bohlen A. , Hergenroder R. , Niemax K. 2004 J. Anal. At. Spectrom. 19 267 -    DOI : 10.1039/b310512a
Perkins W. T. , Pearce N. J. G. , Jeffries T. E. 1993 Geochim. Cosmochim. Acta 57 475 -    DOI : 10.1016/0016-7037(93)90447-5
Gonzalez J. , Mao X. L. , Roy J. , Mao S. S. , Russo R. E. 2002 J. Anal. At. Spectrom. 17 1108 -    DOI : 10.1039/b202122f
Wang Z. , Hattendorf B. , Gunther D. 2006 J. Anal. At. Spectrom. 21 1143 -    DOI : 10.1039/b607469n
Baker S. A. , Dellavecchia M. J. , Smith B. W. , Winefordner J. D. 1997 Anal. Chim. Acta 355 113 -    DOI : 10.1016/S0003-2670(97)00449-2
Bleiner D. , Lienermann P. , Vonmont H. 2005 Talanta 65 1286 -    DOI : 10.1016/j.talanta.2004.09.004