Advanced
Co<sub>3</sub>O<sub>4</sub>/MnO<sub>2</sub> Core/Shell-Nanostructured Pseudocapacitor Electrode
Co3O4/MnO2 Core/Shell-Nanostructured Pseudocapacitor Electrode
Bulletin of the Korean Chemical Society. 2014. Aug, 35(8): 2541-2543
Copyright © 2014, Korea Chemical Society
  • Received : March 05, 2014
  • Accepted : April 01, 2014
  • Published : August 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Ji Hye Kwak
Department of Bionanotechnology, Hanyang University, Kyeonggi-do 426-791, Korea.
Eun Joo Lee
Department of Bionanotechnology, Hanyang University, Kyeonggi-do 426-791, Korea.
Jin Ho Bang
Department of Chemistry and Applied Chemistry, Hanyang University, Kyeonggi-do 426-791, Korea.

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
For Co 3 O 4 deposition, a piece of bare CFP (SGL Technologies, 1 cm × 5 cm) was soaked in a 100 mL, Teflon-lined, stainless steel autoclave that was filled with a solution containing cobalt nitrate hexahydrate (0.2 M) and 0.1 M ammonium nitrate dissolved in ammonium hydroxide solution (9 wt %). The autoclave was heated to 90 °C for 8 h, and was then naturally cooled. To deposit MnO 2 , the blackcolored CFP was thoroughly washed with deionized water, dipped again in the autoclave filled with an aqueous solution (40 mL) containing 71.2 mM KMnO 4 and HCl (1 mL), and heated at 140 °C for 30 min. The amounts of Co 3 O 4 and MnO 2 deposited on CFP were 2.0 and 2.3 mg/cm 2 , respectively.
Co 3 O 4 and MnO 2 were identified using an X-ray diffractometer (Rigaku D/Max-2500/PC) and a Renishaw 2000 confocal Raman microscope. The Brunauer–Emmett–Teller (BET) surface area was determined from the nitrogen adsorption/ desorption isotherm measured using a BELSORP MINI II (BEL JAPAN). A scanning electron microscope (SEM, Hitachi S-4800 FESEM) was employed to examine the surface morphology of the electrodes. The electrochemical performance of the electrodes was investigated via a threeelectrode system with an Ag/AgCl reference electrode and Pt counter electrode in 0.5 M NaSO 4 electrolyte. C A and C m were determined via cyclic voltammetry (CV) performed at various scan rates using the following equation: C A = ∫I·dt/ (ΔV × S) and C m = ∫I·dt/(ΔV × M), where I is the oxidation/ reduction current, dt is the time differential, ΔV is the potential window, S is the geometrical area of the electrode, and M is the mass of the active material.
Supporting Information. XRD pattern of MnO 2 deposited on CFP; CVs and C m and C A of MnO 2 electrode at different scan rates.
Acknowledgements
This work was supported by the research fund of Hanyang University (HY-2013-G).
References
Zhang L. L. , Gu Y. , Zhao X. S. 2013 J. Mater. Chem. A 1 9395 - 9408    DOI : 10.1039/c3ta11114h
Jiang J. , Li Y. , Liu J. , Huang X. , Yuan C. , Lou X. W. 2012 Adv. Mater. 24 5166 - 5180    DOI : 10.1002/adma.201202146
Cao Y. , Yuan F. , Yao M. , Bang J. H. , Lee J.-H. 2014 CrystEngComm 16 826 - 833    DOI : 10.1039/c3ce41840e
Han S. , Wu D. , Li S. , Zhang F. , Feng X. 2014 Adv. Mater. 26 849 - 864    DOI : 10.1002/adma.201303115
Liu J. , Lv W. , Wei W. , Zhang C. , Li Z. , Li B. , Kang F. , Yang Q.-H. 2014 J. Mater. Chem. A 2 3031 - 3037    DOI : 10.1039/c3ta14315e
Jiang H. , Li C. , Sun T. , Ma J. 2012 Chem. Commun. 2606 - 2608
Liu J. , Jiang J. , Cheng C. , Li H. , Zhang J. , Gong H. , Fan H. 2011 J. Adv. Mater. 23 2076 - 2081    DOI : 10.1002/adma.201100058
Hercule K. M. , Wei Q. , Khan A. M. , Zhao Y. , Tian X. , Mai L. 2013 Nano Lett. 13 5685 - 5691    DOI : 10.1021/nl403372n
Xu J. , Wang Q. , Wang X. , Xiang Q. , Liang B. , Chen D. , Shen G. 2013 ACS Nano 7 5453 - 5462    DOI : 10.1021/nn401450s
Gao H. , Xiao F. , Ching C. B. , Duan H. 2012 ACS Appl. Mater. Interfaces 4 2801 - 2810    DOI : 10.1021/am300455d
Li W. , Li G. , Sun J. , Zou R. , Xu K. , Sun Y. , Chen Z. , Yang J. , Hu J. 2013 Nanoscale 5 2901 - 2908    DOI : 10.1039/c3nr34140b
Kwak J. H. , Lee Y.-W. , Bang J. H. 2013 Mater. Lett. 110 237 - 240    DOI : 10.1016/j.matlet.2013.08.032
Lee E. J. , Bang J. H. 2013 Mater. Lett. 105 28 - 31    DOI : 10.1016/j.matlet.2013.04.056
Yuan C. , Yang L. , Hou L. , Shen L. , Zhang F. , Li D. , Zhang X. 2011 J. Mater. Chem. 21 18183 - 18185    DOI : 10.1039/c1jm14173b
Sing K. S. W. , Everett D. H. , Haul R. A. W. , Moscou L. , Pierotti R. A. , Rouquerol J. , Siemieniewska T. 1985 Pure Appl. Chem. 57 603 - 619
Lei Z. , Shi F. , Lu L. 2012 ACS Appl. Mater. Interfaces 4 1058 - 1064    DOI : 10.1021/am2016848
Yang P. , Li Y. , Lin Z. , Ding Y. , Yue S. , Wong C. P. , Cai X. , Tan S. , Mai W. 2014 J. Mater. Chem. A 2 595 - 599
Duay J. , Sherrill S. A. , Gui Z. , Gillette E. , Lee S. B. 2013 ACS Nano 7 1200 - 1214    DOI : 10.1021/nn3056077
Yang L. , Cheng S. , Ding Y. , Zhu X. , Wang Z. L. , Liu M. 2011 Nano Lett. 12 321 - 325