Advanced
Rapid Assembly and Cloning of Zinc Finger Proteins with Multiple Finger Modules
Rapid Assembly and Cloning of Zinc Finger Proteins with Multiple Finger Modules
Bulletin of the Korean Chemical Society. 2014. Jul, 35(7): 2197-2200
Copyright © 2014, Korea Chemical Society
  • Received : March 14, 2014
  • Accepted : March 24, 2014
  • Published : July 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
So-Young Park
Yang-Gyun Kim

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
PCR Amplification. For convenience and efficiency of the vector PCR, the vector template DNA was constructed into pJHU-1 vector (a gift from professor Srinivasan Chandrasegaran at department of Environmental Health Sciences of the Johns Hopkins University), a 2-kb minimal size cloning vector. Two ZF template oligonucleotides and all PCR primers were purchased from Bioneer Cooperation. For a typical PCR reaction, the reaction volume was 50 μL containing 5 μL of the 10X Pfu buffer, 4 μL of dNTP (2.5 mM each), 1 μL of 10 μM primer mix, 1 μL of 50 ng/μL template DNA and 1 μL of Pfu polymerase (5 U/μL) (Labo Pass). For vector PCR, the reaction mixture was incubated at 94 ℃ 5 min, and 30 cycles of denaturation (94 ℃ for 1 min), annealing (57 ℃ for 1 min) and extension (72 ℃ for 4 min) were performed. And, the reaction mixture was kept at 72 ℃ for 10 min. For the ZF PCR, the reaction condition was same except the extension time, which was 1 min. After PCR, reactions were subjected to Dpn I digestion at 37 ℃ for 4 h to remove template plasmid DNAs, if necessary. Each PCR product was subjected to electrophoresis and size-checked in agarose gel.
Gibson Assembly and Cloning. Vector DNA fragments were gel-isolated by MEGA quick-spin TM total kit (iNtRON). The gel-isolated vector fragments and two (or three) PCR products of ZF modules for 3 (or 4)-finger ZFP construction. For the Gibson assembly, Gibson Assembly TM master mix was used (New England Biolab). In this assay, the reaction volume was 20 μL containing 10 μL of the 2X Gibson Assembly Master Mix and PCR-amplified DNA fragments, 0.2 pmole of vector fragment and 0.6 pmole of each ZF module fragment. The reaction was incubated for 1 h at 50 °C. After incubation, the DNA was used for transformation by electroporation. For expression of CCR5-L and -R ZFN, the constructed ZFP genes was transferred into pET28a vector (Novagen) using Nco I and Hind III sites.
DNA Cleavage Activity Assay CCR5-L-ZFN and CCR5- R-ZFN cloning vectors were used for in-vitro translation reactions by TNT ® T7 Quick-Coupled Transcription/Translation System (Promega). In this assay, reaction volumes were 20 μL containing 2 μL of the 10X reaction buffer (50 mM potassium acetate, 20 mM Tris-acetate, pH 7.9, 10 mM magnesium acetate, 1 mM DTT), 500 ng of the ScaI-linearized target DNA, and 2 μL of each expressed either CCR5-L or -L- ZFN. The reaction was incubated for 12 h at 22 ℃. After the DNA cleavage, 10 μg of RNase A (GENE ALL) was added into the reactions and incubated for 30 min at 22 ℃ to remove RNAs. For removal of proteins in the reaction, 10 μg of Protease K (New England Biolab) was added to the samples and incubated for 2 h at 55 ℃. The reaction was subjected to agarose gel electrophoresis and stained with ethidium bromide. And DNAs were visualized under UV.
Supporting Information. Supplementary data associated with this article can be found in the online version.
Acknowledgements
Acknowledgments. This work was supported by the grant (No. 2009-0075300) from the Ministry of Education, Science and Technology.
References
Bateman A. , Coin L. , Durbin R. , Finn R. D. , Hollich V. , Griffiths-Jones S. , Khanna A. , Marshall M. , Moxon S. , Sonnhammer E. L. , Studholme D. J. , Yeats C. , Eddy S. R. 2002 Nucleic Acids Res. 30 276 - 280    DOI : 10.1093/nar/30.1.276
Klug A. 2010 Annu. Rev. Biochem. 79 213 - 231    DOI : 10.1146/annurev-biochem-010909-095056
1988 Proc. Natl. Acad. Sci. USA 85 99 - 102    DOI : 10.1073/pnas.85.1.99
Lee M. S. , Gippert G. P. , Soman K. V. , Case D. A. , Wright P. E. 1989 Science 245 635 - 637    DOI : 10.1126/science.2503871
Pavletich N. P. , Pabo C. O. 1991 Science 252 809 - 817    DOI : 10.1126/science.2028256
Nakaseko Y. , Neuhaus D. , Klug A. , Rhodes D. 1992 J. Mol. Biol. 228 619 - 636    DOI : 10.1016/0022-2836(92)90845-B
Neuhaus D. , Nakaseko Y. , Schwabe J. W. , Klug A. 1992 J. Mol. Biol. 228 637 - 651    DOI : 10.1016/0022-2836(92)90846-C
Fairall L. , Schwabe J. W. , Chapman L. , Finch J. T. , Rhodes D. 1993 Nature 366 483 - 487    DOI : 10.1038/366483a0
Desjarlais J. R. , Berg J. M. 1993 Proc. Natl. Acad. Sci. USA 90 2256 - 2260    DOI : 10.1073/pnas.90.6.2256
Rebar E. J. , Pabo C. O. 1994 Science 263 671 - 673    DOI : 10.1126/science.8303274
Jamieson A. C. , Kim S. H. , Wells J. A. 1994 Biochemistry 33 5689 - 5695    DOI : 10.1021/bi00185a004
Choo Y. , Klug A. 1994 Proc. Natl. Acad. Sci. USA 91 11168 - 11172    DOI : 10.1073/pnas.91.23.11168
Wu H. , Yang W. P. , Barbas C. F. 3rd. 1995 Proc. Natl. Acad. Sci. USA 92 344 - 348    DOI : 10.1073/pnas.92.2.344
Mandell J. G. , Barbas C. F. 2006 Nucleic Acids Res. 34 W516 - W523
Choo Y. , Sánchez-García I. , Klug A. 1994 Nature 372 642 - 645    DOI : 10.1038/372642a0
Blancafort P. , Chen E. I. , Gonzalez B. , Bergquist S. , Zijlstra A. , Guthy D. , Brachat A. , Brakenhoff R. H. , Quigley J. P. , Erdmann D. , Barbas C. F. 2005 Proc. Natl. Acad. Sci. USA 102 11716 - 11721    DOI : 10.1073/pnas.0501162102
Lee D. K. , Seol W. , Kim J. S. 2003 Curr. Top. Med. Chem. 3 645 - 657    DOI : 10.2174/1568026033452384
Kim Y.-G. , Cha J. , Chandrasegaran S. 1996 Proc. Natl. Acad. Sci. USA 93 1156 - 1160    DOI : 10.1073/pnas.93.3.1156
Tan W. , Zhu K. , Segal D. J. , Barbas C. F. , Chow S. A. 2004 J. Virol. 78 1301 - 1313    DOI : 10.1128/JVI.78.3.1301-1313.2004
Gordley R. M. , Smith J. D. , Gräslund T. , Barbas C. F. 2007 J. Mol. Biol. 367 802 - 813    DOI : 10.1016/j.jmb.2007.01.017
Carroll D. , Morton J. J. , Beumer K. J. , Segal D. J. 2006 Nat. Protoc. 1 1329 - 1341    DOI : 10.1038/nprot.2006.231
Wright D. A. , Thibodeau-Beganny S. , Sander J. D. , Winfrey R. J. , Hirsh A. S. , Eichtinger M. , Fu F. , Porteus M. H. , Dobbs D. , Voytas D. F. , Joung J. K. 2006 Nat. Protoc. 1 1637 - 1652    DOI : 10.1038/nprot.2006.259
Gonzalez B. , Schwimmer L. J. , Fuller R. P. , Ye Y. , Asawapornmongkol L. , Barbas C. F. 2010 Nat. Protoc. 5 791 - 810    DOI : 10.1038/nprot.2010.34
Fujii W. , Kano K. , Sugiura K. , Naito K. 2013 PLoS One 8 e59801 -
Lombardo A. , Genovese P. , Beausejour C. M. , Colleoni S. , Lee Y. L. , Kim K. A. , Ando D. , Urnov F. D. , Galli C. , Gregory P. D. , Holmes M. C. , Naldini L. 2007 Nat. Biotechnol. 25 1298 - 1306    DOI : 10.1038/nbt1353
Gibson D. G. , Young L. , Chuang R. Y. , Venter J. C. , Hutchison C. A. , Smith H. 2009 Nat. Methods 6 343 - 345    DOI : 10.1038/nmeth.1318
Beaucage S. L. , Iyer R. P. 1992 Tetrahedron 48 2223 - 2311    DOI : 10.1016/S0040-4020(01)88752-4