Advanced
A Two-Dimensional Zinc Coordination Polymer Based on a Pyridyl-Carboxylate Linking Ligand Containing an Intervening Amide Group: [ZnCl(L)]<sub>∞</sub> (HL
A Two-Dimensional Zinc Coordination Polymer Based on a Pyridyl-Carboxylate Linking Ligand Containing an Intervening Amide Group: [ZnCl(L)] (HL
Bulletin of the Korean Chemical Society. 2014. Jul, 35(7): 2179-2182
Copyright © 2014, Korea Chemical Society
  • Received : February 24, 2014
  • Accepted : March 18, 2014
  • Published : July 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
SuJin Park
Soon W. Lee

Abstract
Keywords
PPT Slide
Lager Image
Experimental
All solid chemicals were purified by recrystallization, and all solvents were distilled. Infrared (IR) samples were prepared as KBr pellets, and their spectra were obtained in the range 400–4000 cm −1 on a Vertex 70 FTIR spectrophotometer. Elemental analyses were carried out with an Elementar Vario EL cube at the Cooperative Center for Research Facilities (CCRF) in Sungkyunkwan University. Thermogravimetric analysis (TGA) was performed on a TA4000/SDT 2960 instrument (CCRF). The ligand (HL = 6-(nicotinamido)-2-naphthoic acid) was prepared by the literature methods. 31
Synthesis of [ZnCl(L)] (1). An aqueous solution containing of anhydrous ZnCl 2 (14 mg, 0.1 mmol), HL (58 mg, 0.1 mmol), H 2 O (15 mL), and 1 N NaOH (0.2 mL, 0.1 mmol) was heated in a 23-mL Teflon-lined reaction vessel at 150 ℃ for 3 days, and then air-cooled slowly to room temperature. The resulting pink crystals were filtered, washed with dimethyl sulfoxide (DMSO, 5 mL × 5), H 2 O (5 mL × 3), and ethanol (5 mL × 3), and then vacuum-dried to give the product (12 mg, 0.031 mmol, 31% yield). mp 435–437 ℃. IR (KBr, cm −1 ): 3729 (w), 3335 (w), 2981 (w), 2897 (w), 1690 (s), 1613 (m), 1549 (m), 1475 (m), 1422 (m), 1302 (m), 1262 (m), 1216 (m), 1118 (m), 1058 (w), 910 (w), 835 (w), 755 (w), 628 (w), 462 (w). Anal. Calc. for C 17 H 11 ClN 2 O 3 Zn: C 52.07; H 2.83; N 7.14; O 12.24. Found: C 53.12; H 2.14; N 7.01; O 12.84.
X-ray Structure Determination. All X-ray data were collected with a Bruker Smart APEX2 diffractometer equipped with a Mo X-ray tube (CCRF). Collected data were corrected for absorption with SADABS based upon the Laue symmetry by using equivalent reflections. 38 All calculations were carried out with SHELXTL programs. 39
A pink crystal of polymer 1, shaped as a block of approximate dimensions 0.40 × 0.36 × 0.12 mm, was used for crystal-and intensity-data collection. The structure was solved by direct methods. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were generated in idealized positions and refined in a riding mode. Details on crystal data, intensity collection, and refinement details are given in Table 1. Selected bond lengths and bond angles are presented in Table 2.
X-ray data collection and structure refinement for polymer1
PPT Slide
Lager Image
aR =∑[|Fo| − |Fc|]/∑|Fo|], bwR2 = ∑[w(Fo2Fc2)2]/∑[w(Fo2)2]1/2
Selected bond lengths (Å) and bond angles (°) in polymer1
PPT Slide
Lager Image
Symmetry transformations used to generate equivalent atoms: #1 = −x + 1, −y, −z; #2 = −x + 2, y + 1/2, −z + 3/2; #3 = −x + 2, y − 1/2, −z + 3/2.
Results and Discussion
Preparation. Polymer 1 was prepared from anhydrous ZnCl 2 , HL, and NaOH in the mole ratio of 1:1:1, under hydrothermal conditions (eq. 1). The base was added to deprotonate the free ligand (HL) to its deprotonated form (L ), and the unreacted ligand could be removed with DMSO during the work-up process. The product was characterized by elemental analysis, IR spectroscopy, TGA, and singlecrystal X-ray crystallography.
PPT Slide
Lager Image
The IR spectrum of the free ligand displays a characteristic N–H stretching band at 3328 cm −1 and C=O stretching band at 1621 cm −1 . 31 On the other hand, the IR spectrum of the polymer 1 shows the corresponding N–H and C=O stretching bands at 3335 and 1613 cm −1 , respectively
Crystal Structure. Figure 1 shows an asymmetric unit that consists of a Zn 2+ ion, an L ligand, and a Cl ligand. All non-hydrogen atoms occupy general positions. The local coordination environment of the Zn 2+ ion in polymer 1 is given in Figure 2 , in which two Zn 2+ ions are joined by two bridging carboxylate groups. The Zn 2+ ion is coordinated to one nitrogen and two oxygen atoms from three ligands, in addition to the chloro ligand. The amide group does not coordinate to the metal. The amide N–H bond forms a weak intermolecular hydrogen bond with the Cl ligand [N2−HN2 = 0.86 Å, N2…Cl1 ( x + 1, y , z + 1) = 3.555(2) Å, Cl1…HN2 = 2.71 Å, N2−HN2…Cl1 = 168°]. As mentioned in Introduction, the ligand HL was previously employed to produce a two-dimensional copper polymer, [CuL 2 (H 2 O)]·(H 2 O) 2 ] , in which the Cu 2+ ion has a distorted square-pyramidal coordination sphere. 28 On the other hand, the Zn 2+ ion in polymer 1 has a distorted tetrahedral coordination sphere.
PPT Slide
Lager Image
The asymmetric unit of polymer 1. Displacement ellipsoids for non-hydrogen atoms exhibit 40% probability level.
PPT Slide
Lager Image
Local coordination environment around the Zn2+ ion.
Figure 3 shows a repeat unit in polymer 1, which consists of two subunits: (1) two Zn 2+ ions and two carboxylate groups (subunit 1, an 8-membered ring) and (2) four Zn 2+ ions and four ligands (subunit 2, a 60-membered ring). The Zn…Zn separations in subunits 1 and 2 are 3.5735(4) and 16.2769(4) Å, respectively. These two subunits are linked to form a two-dimensional layer structure in the
PPT Slide
Lager Image
direction ( Figure 4 ), in which the Cl ligands lie nearly perpendicular to this layer.
PPT Slide
Lager Image
Repeat unit consisting of two subunits.
PPT Slide
Lager Image
Packing diagram showing a part of a two-dimensional layer.
To the best of our knowledge, only the two ligands in Scheme 1 and 5-(nicotinamido)isophthalic acid (H 2 NAIP), 24,28,40 all of which are basically pyridine–carboxylate ligands and possess an intervening amide group in common, have been employed so far to prepare CPs. For instance, the hydrothermal reactions involving the H 2 NAIP ligand, a pyridyl– dicar boxylate ligand, produced 1-D and 3-D polymers: {[M(NAIP)(H 2 O) 4 ]·2(H 2 O)} (M = Co, Mn), {[Zn(NAIP)]·0.5(H 2 O)} , and {Cd(NAIP)(H 2O ) 2 ]·1.5(H 2 O)} . Hence, polymer 1 is another example of a coordination polymer constructed from the pyridine–carboxylate-type linking ligand with an intervening amide group.
PPT Slide
Lager Image
In order to examine the thermal behavior of polymer 1, the thermogravimetric analysis was performed. The TGA curve displays a single well-defined weight loss. This polymer is stable up to 436 ℃, which clearly demonstrates its high thermal stability ( Figure 5 ). The abrupt weight loss occurs from 436 to 480 ℃, above which the gradual decomposition ensues.
PPT Slide
Lager Image
TGA curve for polymer 1.
In summary, a two-dimensional zinc coordination polymer, [ZnCl(L)] (1), was prepared from ZnCl 2 , 6-(nicotinamido)-2-naphthoic acid (HL), and NaOH, under hydrothermal conditions. Polymer 1 contains a pyridyl–carboxylate-type linking ligand with an intervening amide group. This polymer is constructed on the basis of a repeat unit consisting of two subunits: an 8-membered ring and a 60-membered ring, and its framework appears to have a very high thermal stability that is retained up to 436 ℃.
Supporting Information. CCDC 985715 contains the supplementary crystallographic data for polymer 1. These data can be obtained free of charge via http://www.ccdc. cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2012R1A1A2000876).
References
Cook T. R. , Zheng Y.-R. , Stang P. J. 2013 Chem. Rev. 113 734 - 777    DOI : 10.1021/cr3002824
Furukawa H. , Cordova K. E. , O’Keeffe M. , Yaghi O. M. 2013 Science 341 1230444 -    DOI : 10.1126/science.1230444
Cui Y. , Yue Y. , Qian G. 2012 Chem. Rev. 112 1126 - 1162    DOI : 10.1021/cr200101d
Horcajada P. , Gref R. , Baati T. , Allan P. K. , Maurin G. , Couvreur P. , Ferey G. , Morris R. E. 2012 Chem. Rev. 112 1232 - 1268    DOI : 10.1021/cr200256v
Jiang H. L. , Xu Q. 2011 Chem. Commun. 3351 - 3370
Farha O. K. , Hupp J. T. 2010 Acc. Chem. Res. 43 1166 - 1175    DOI : 10.1021/ar1000617
McKinlay A. C. , Morris R. E. , Horcajada P. , Fèrey G. , Gref R. , Couvreur P. 2010 Angew. Chem. Int. Ed. 49 6260 - 6266    DOI : 10.1002/anie.201000048
Düren T. , Bae Y. S. , Snurrb R. Q. 2009 Chem. Soc. Rev. 38 1237 - 1247    DOI : 10.1039/b803498m
Lin W. , Rieter W. J. , Taylor K. M. L. 2009 Angew. Chem. Int. Ed. 48 650 - 658    DOI : 10.1002/anie.200803387
Batten S. R. , Champness N. R. , Chen X.-M. , Garcia-Martinez J. , Kitagawa S. , Öhrström L. , O’Keeffe M. , Paik Suh M. , Reedijk J. 2013 Pure Appl. Chem. 85 1715 - 1724
Robin A. Y. , Fromm K. M. 2006 Coord. Chem. Rev. 250 2127 - 2157    DOI : 10.1016/j.ccr.2006.02.013
Stock N. , Biswas S. 2012 Chem. Rev. 112 933 - 969    DOI : 10.1021/cr200304e
Perry IV J. J. , Perman J. A. , Zaworotko M. 2009 J. Chem. Soc. Rev. 38 1400 - 1417    DOI : 10.1039/b807086p
Sun Y. G. , Wang S. J. , Li K. L. , Gao E. J. , Xiong G. , Guo M. Y. , Xu Z. H. , Tian Y. W. 2013 Inorg. Chem. Commun. 28 1 - 6    DOI : 10.1016/j.inoche.2012.10.032
Peng H. M. , Jin H. G. , Gu Z. G. , Hong X. J. , Wang M. F. , Jia H. Y. , Xu S. H. , Cai Y. P. 2012 Eur. J. Inorg. Chem. 5562 - 5570
Huang J. , Li H. , Zhang J. , Jiang L. , Su C. Y. 2012 Inorg. Chim. Acta 388 16 - 21    DOI : 10.1016/j.ica.2012.03.004
Du G. , Kan X. , Li H. 2011 Polyhedron 30 3197 - 3201    DOI : 10.1016/j.poly.2011.04.010
Yao J. C. , Guo J. B. , Wang J. G. , Wang Y. F. , Zhang L. , Fan C. P. 2010 Inorg. Chem. Commun. 13 1178 - 1183    DOI : 10.1016/j.inoche.2010.06.043
Chen L. , Lin X. M. , Ying Y. , Zhan Q. G. , Hong Z. H. , Li J. Y. , Weng N. S. , Cai Y. P. 2009 Inorg. Chem. Commun. 12 761 - 765    DOI : 10.1016/j.inoche.2009.06.009
Liu Z. H. , Qiu Y. C. , Li Y. H. , Deng H. , Zeller M. 2008 Polyhedron 27 3493 - 3499    DOI : 10.1016/j.poly.2008.07.035
Cahill C. L. , de Lilla D. T. , Frischa M. 2007 CrystEngComm 9 15 - 26    DOI : 10.1039/b615696g
Gu X. , Xue D. 2006 Cryst. Growth Des. 6 2551 - 2557    DOI : 10.1021/cg060485o
Zheng Z. N. , Lee S. W. 2014 Bull. Korean Chem. Soc. 35 647 - 650    DOI : 10.5012/bkcs.2014.35.2.647
Zheng Z. N. , Lee S. W. 2014 Polyhedron 69 197 - 204    DOI : 10.1016/j.poly.2013.12.002
Lee Y. J. , Lee S. W. 2013 Polyhedron 53 103 - 112    DOI : 10.1016/j.poly.2013.01.019
Zheng Z. N. , Jang Y. O. , Lee S. W. 2012 Cryst. Growth Des. 12 3045 - 3056    DOI : 10.1021/cg300256k
Han S. H. , Zheng Z. N. , Cho S. I. , Lee S. W. 2012 Bull. Korean Chem. Soc. 33 2017 - 2022    DOI : 10.5012/bkcs.2012.33.6.2017
Song Y. S. , Lee S. W. 2012 Acta Cryst. E68 m1422 -
Zheng Z. N. , Lee S. W. 2012 Acta Cryst. E68 o774 -
Han S. H. , Lee S. W. 2012 Acta Cryst. E68 o294 -
Song Y. S. , Lee S. W. 2012 Acta Cryst. E68 o1978 -
Han S. H. , Lee S. W. 2012 Polyhedron 31 255 - 264    DOI : 10.1016/j.poly.2011.09.013
Jung Y. M. , Lee S. W. 2011 Acta Cryst. E67 m253 - m254
Jang Y. O. , Lee S. W. 2010 Acta Cryst. E66 m293 -
Wang Z. , Cohen S. M. 2009 Chem. Soc. Rev. 38 1315 - 1329    DOI : 10.1039/b802258p
Meek S. T. , Greathouse J. A. , Allendorf M. D. 2011 Adv. Mater. 23 249 - 267    DOI : 10.1002/adma.201002854
Cohen S. M. 2012 Chem. Rev. 112 970 - 1000    DOI : 10.1021/cr200179u
Sheldrick G. M. 1996 SADABS, Program for Absorption Correction University of Göttingen
2008 SHELXTL, Structure Determination Software Programs Bruker Analytical X-ray Instruments Inc. Madison, Wisconsin, USA
Deng X.-J. , Gu 1W. , Zeng L.-F. , Wang L. , Liu X. 2011 Polyhedron 30 2038 - 2044    DOI : 10.1016/j.poly.2011.05.020