Advanced
Heterometallic Zn<sub>6</sub>Ti<sub>2</sub> Building Block Persistent in Metal-organic Frameworks Based on Asymmetrically Substituted Dicarboxylate Ligands
Heterometallic Zn6Ti2 Building Block Persistent in Metal-organic Frameworks Based on Asymmetrically Substituted Dicarboxylate Ligands
Bulletin of the Korean Chemical Society. 2014. Jun, 35(6): 1879-1882
Copyright © 2014, Korea Chemical Society
  • Received : January 23, 2014
  • Accepted : February 21, 2014
  • Published : June 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Hyungphil Chun

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
- Materials and Methods.
All the reagents were commer-cially available and used as received except for H 3 (obpdc) which was purified by recrystallization before use. IR data were recorded on KBr pellets using a Varian FTS 1000 instru-ment.
Synthesis of [H2N(CH3)2][Zn33-OH)Ti(obpdc)3(O3CH)] (1). Titanium(IV) isopropoxide (29.6 µL, 0.10 mmol) was added to a solution of H 3 obpdc (77.7 mg, 0.30 mmol) in DMF (3.5 mL) to form an orange colored turbid mixture. After stirring for 30 min zinc nitrate hexahydrate (51.4 mg, 0.17 mmol) and formic acid (3.8 µL, 0.1 mmol) were added to it. The final mixture was well-stirred for 2 h at room temperature and then filtered. The solution was heated in a sealed glass vial with the following steps: 1 day at 75 °C, 2 days at 95-100 °C and 1 day at 120 °C. The product was separated from the orange-colored suspension, thoroughly washed with fresh DMF and soaked in dichloromethane before drying under vacuum at room temperature for 12 h and then at 100 °C for 5 h (42.7 mg, 68%). Calcd: C, 48.4; H, 2.8; N, 1.3; Ti, 4.3%. Found: C, 48.7; H, 2.9; N, 1.2; Ti, 4.1%.
X-ray Powder Diffraction. X-ray powder diffraction patterns were recorded at the 2D SMC beamline of the Pohang Accelerator Laboratory, Korea. Crystalline samples were thoroughly ground in an agate mortar and packed in a capillary tube (0.3 mm diameter). Debye-Scherrer diffraction data were collected on an ADSC Quantum-210 detector with a fixed wavelength (λ = 1.40000 Å) and an exposure of 60 sec. The ADX program 7 was used for data collection, and Fit2D program 8 was used to convert the 2D to 1D patterns.
X-ray Single-crystal Diffraction. Single-crystals of as-synthesized 1 were directly picked up from the mother liquor with a cryoloop attached to a goniohead, and trans-ferred to a cold stream of liquid nitrogen (−173 °C). The data collection was carried out using synchrotron X-ray on a ADSC Quantum 210 CCD detector with a silicon (111) double-crystal monochromator at 2D SMC beamline of the Pohang Accelerator Laboratory, Korea. The ADSC Quantum- 210 ADX program 7 was used for data collection, and HKL3000sm (Ver. 703r) 9 was used for cell refinement, data integration, and absorption correction. After space group determination, the structures were solved by direct methods and subsequent difference Fourier techniques (SHEXLTL). 10 All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions. The diffused electron densities in the void space could not be modeled properly, and were removed from the reflection data using the SQUEEZE routine of PLATON. 11 The results of SQUEEZE process were attached to the CIF file. The crystal data and results of structure refinements are summarized in Table S1. Crystallographic data for the structure reported here have been deposited with CCDC (Deposition No. CCDC-981813 ( 1 )). These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, E-mail: deposit@ccdc.cam.ac.uk
Gas Sorption. Gas sorption isotherms were measured in a bath of liquid nitrogen (77 K) with a Belsorp Mini-II. The gases used were of the highest quality available (N60 for H 2 , N50 for Ar and N 2 , and N45 for O 2 ). Typically, 100-150 mg of solvent-exchanged samples were evacuated under a dynamic vacuum at room temperature for 12 h. The equilibrium criteria were set consistent throughout all the measurements (change in adsorption amounts less than 0.1 cm 3 /g within 180 sec). Complete gas sorption isotherms are shown in Fig. S2.
Acknowledgements
Supporting Information.Summary of crystal data, FT-IR spectra, complete gas sorption isotherms and crystallo-graphic data in CIF format for1.
References
Arvai A. J. , Nielsen C. 1983 ADSC Quantum-210 ADX Program Area Detector System Corporation Poway, CA, USA
Hammersley A. Fit2D Program, ESRF; 6 Rue Jules Horowitz, BP 220 38043, Grenoble CEDEX 9
Otwinowski Z. , Minor W. 1997 Methods in Enzymology; Carter, C. W., Jr., Sweet, R. M., Eds., Part A Academic Press New York
Sheldrick G. M. 1997 SHELXTL-PLUS, Crystal Structure Analysis Package Bruker Analytical X-Ray Madison, WI, USA
Spek A. L. 2003 J. Appl. Cryst. 36 7 -    DOI : 10.1107/S0021889802022112