Advanced
Solvothermal Synthesis of Supercrystals of Hematite via the Self-assembly of Nanocubes
Solvothermal Synthesis of Supercrystals of Hematite via the Self-assembly of Nanocubes
Bulletin of the Korean Chemical Society. 2014. Jun, 35(6): 1837-1840
Copyright © 2014, Korea Chemical Society
  • Received : December 30, 2013
  • Accepted : February 05, 2014
  • Published : June 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Young-Sik Cho
Seung-Hyun Lee
Myeong-Jin Kim
Young-Duk Huh

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental Section
FeCl 3 ⋅6H 2 O (Aldrich), K 4 Fe(CN) 6 (Aldrich), sodium oleate (TCI), oleic acid (Aldrich), and tetraoctylammonium bro-mide (TOABr, Aldrich) were used as received. In a typical synthesis of α-Fe 2 O 3 supercrystals, 0.10 M FeCl 3 ⋅6H 2 O was dissolved in 20 mL water. 1.83 g sodium oleate, 5.0 mL oleic acid, and 40 mL toluene were then added to the solution. The water-toluene bilayer mixture was vigorously stirring for 1 h at room temperature to allow the transfer of Fe 3+ ions from the aqueous solution to the toluene phase through coordination with the oleate anions to form iron-oleate complexes. 3.28 g TOABr in 40 mL toluene was then added to 20 mL aqueous solution of Fe(CN) 6 4− ions to obtain the TOA-[Fe(CN) 6 ] complexes into the toluene phase. The two toluene solutions containing the Fe-OA and TOA-[Fe(CN) 6 ] complexes were mixed under stirring. After mix-ing the two optically transparent solutions, the resulting solution was transferred to a 100 mL Teflon-lined autoclave. To prepare the α-Fe 2 O 3 supercrystals, solvothermal reactions were conducted at 180 °C for 72 h. The product was collect-ed by centrifuging the solution at 4000 rpm for 10 min. The precipitated products were washed several times with water and ethanol, and dried at 60 °C for 12 h.
The α-Fe 2 O 3 product was examined with a Raman micro-scope (Kaiser, RamanRxn Microprobe). The capping organic compound in the supercrystals of α-Fe 2 O 3 was examined by using an FT-IR spectrometer (Perkin Elmer 100 FT-IR). The α-Fe 2 O 3 product was also analyzed by powder X-ray diffr-action (XRD, PANanlytical, X’pert-pro MPD) using Cu K α radiation. The morphologies of the supercrystals and the superlattice patterns of the nanocubes of α-Fe 2 O 3 were ex-amined by using scanning electron microscopy (SEM, Hitachi S-4300) and high resolution transmission electron micro-scopy (HRTEM, JEOL JEM-3010), respectively.
References
Talapin D. V. 2008 ACS Nano 2 1097 -    DOI : 10.1021/nn8003179
Park J. , An K. , Hwang Y. , Park J. G. , Noh H. J. , Kim J. Y. , Park J. H. , Hwang N. M. , Hyeon T. 2004 Nature Mater 3 891 -    DOI : 10.1038/nmat1251
Ahniyaz A. , Sakamoto Y. , Bergstrom L. 2007 Proc. Natl. Acad. Sci. 104 17570 -    DOI : 10.1073/pnas.0704210104
Quan Z. , Fang J. 2010 Nano Today 5 390 -    DOI : 10.1016/j.nantod.2010.08.011
Nguyen T. D. , Do T. O. 2009 J. Phys. Chem. C 113 11204 -
Kinge S. , Crego-Calama M. , Reinhoudt D. N. 2008 ChemPhysChem 9 20 -    DOI : 10.1002/cphc.200700475
Stoeva S. I. , Prasad B. L. V. , Uma S. , Stoimenov P. K. , Zaikovski V. , Sorensen C. M. , Klabunde K. J. 2003 J. Phys. Chem. B 107 7441 -    DOI : 10.1021/jp030013+
Chan H. , Demortière A. , Vukovic L. , Král P. , Petit C. 2012 ACS Nano 6 4203 -    DOI : 10.1021/nn3007338
Zhang J. , Kumbhar A. , He J. , Das N. C. , Yang K. , Wang J. Q. , Wang H. , Stokes K. L. , Fang J. 2008 J. Am. Chem. Soc. 130 15203 -    DOI : 10.1021/ja806120w
Mou X. , Wei X. , Li Y. , Shen W. 2012 CrystEngComm 14 5107 -    DOI : 10.1039/c2ce25109d
Wang G. , Gou X. , Horvat J. , Park J. 2008 J. Phys. Chem. C 112 15220 -    DOI : 10.1021/jp803869e
Wang Z. , Luan D. , Madhavi S. , Li C. M. , Lou X. W. 2011 Chem. Commun. 8061 -
Liang X. , Wang X. , Zhuang J. , Chen Y. , Wang D. , Li Y. 2006 Adv. Funct. Mater. 16 1805 -    DOI : 10.1002/adfm.200500884
Wang S. B. , Min Y. L. , Yu S. H. 2007 J. Phys. Chem. C 111 3551 -    DOI : 10.1021/jp068647e
Woo K. , Lee H. J. , Ahn J. P. , Park Y. S. 2003 Adv. Mater. 15 1761 -    DOI : 10.1002/adma.200305561
Mehdizadeh R. , Saghatfororoush L. A. , Sanati S. 2012 Superlattices Microstruct. 52 92 -    DOI : 10.1016/j.spmi.2012.03.017
Lv B. , Liu Z. , Tian H. , Xu Y. , Wu D. , Sun Y. 2010 Adv. Funct. Mater. 20 3987 -    DOI : 10.1002/adfm.201001021
Jubb A. M. , Allen H. C. 2010 ACS Appl. Mater. Interfaces 2 2804 -    DOI : 10.1021/am1004943
Chamritski I. , Burns G. 2005 J. Phys. Chem. B 109 4965 -    DOI : 10.1021/jp048748h
Bai F. , Wang D. , Huo Z. , Chen W. , Liu L. , Liang X. , Chen C. , Wang X. , Peng Q. , Li Y. 2007 Angew. Chem. Int. Ed. 46 6650 -    DOI : 10.1002/anie.200701355
Lee S. H. , Huh Y. D. 2012 Bull. Korean Chem. Soc. 33 1078 -    DOI : 10.5012/bkcs.2012.33.3.1078
Hu M. , Belik A. A. , Imura M. , Mibu K. , Tsujimoto Y. , Yamauchi Y. 2012 Chem. Mater. 24 2698 -    DOI : 10.1021/cm300615s
Zboril R. , Machala L. , Mashlan M. , Sharma V. 2004 Cryst. Growth Des. 4 1317 -    DOI : 10.1021/cg049748+