Advanced
Synthesis and Self-Assemblies of Bithiophene Functionalized 1H-Pyrazole Derivatives
Synthesis and Self-Assemblies of Bithiophene Functionalized 1H-Pyrazole Derivatives
Bulletin of the Korean Chemical Society. 2014. Apr, 35(4): 1221-1224
Copyright © 2014, Korea Chemical Society
  • Received : November 04, 2013
  • Accepted : December 11, 2013
  • Published : April 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Jung Su Park

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
All reactions were carried out under an inert atmosphere of argon. THF was distilled from sodium with benzophen-one. Dichloromethane and DMF were distilled over CaH 2 . Pd(PPh 3 ) 4 and CuI were purchased from Aldrich and used without further purification. The compounds, 2,2'-bithiophen-5-yltributylstannane, tert -butyl 4-iodo-1 H -pyrazole-1-carbox-ylate, tert -butyl 4-iodo-3,5-dimethyl-1 H -pyrazole-1-carboxylate, and tert -butyl 4-iodo-3,5-diphenyl-1 H -pyrazole-1-carboxylate were synthesized according to the reported pro-cedures. 25,26 NMR spectra were recorded on a Varian Inova 400 MHz FT-NMR spectrometer at ambient temperature.
Synthesis of 4-([2,2'-Bithiophen]-5-yl)-1H-pyrazole (1). A mixture of 2,2'-bithiophen-5-yltributylstannane (5.02 g, 11 mmol), tert -butyl 4-iodo-1 H -pyrazole-1-carboxylate (2.94 g, 10 mmol), Pd(PPh 3 ) 4 (0.58 g, 0.5 mmol), and CuI (0.19 g, 1 mmol) in 50 mL of THF was stirred for 24 h under reflux condition and then cooled to room temperature. The solvent removed by vacuum and the residue was heated for 30 minutes under vacuum at 180 °C. After cooling at room temperature, purification of the product by flash column chromatography (SiO 2 : n -hexanes/DCM) provided the corre-sponding product 1 in 65% yield. 1 H NMR (400 MHz, DMSO- d 6 ) δ 13.09 (s, 1H), δ 7.97 (br s, 2H), δ 7.45 (dd, J = 5.1, 1.1 Hz, 1H), δ 7.24 (dd, J = 3.6, 1.1 Hz, 1H), δ 7.21 (d, J = 3.7 Hz, 1H), δ 7.16 (d, J = 3.7 Hz, 1H), δ 7.06 (dd, J = 5.1, 3.6 Hz, 1H); 13 C NMR (101 MHz, DMSO) δ 136.7, 134.5, 133.3, 128.3, 124.9, 124.6, 123.5, 123.2, 115.0; HRMS (ESI) m/z calcd. for C 11 H 8 N 2 S 2 [MH] + 233.0207; found 233.0096.
Synthesis of 4-([2,2'-Bithiophen]-5-yl)-3,5-dimethyl-1H-pyrazole (2). The reaction procedures was similar to the preparation of compound 1 except using tert -butyl 4-iodo-3,5-dimethyl-1 H -pyrazole-1-carboxylate instead of tert -butyl 4-iodo-1 H -pyrazole-1-carboxylate. (Yield 59%) 1 H NMR (400 MHz, DMSO- d 6 ) δ 12.49 (s, 1H), δ 7.46 (dd, J = 5.1, 1.0 Hz, 1H), δ 7.30-7.22 (m, 2H), δ 7.07 (dd, J = 5.1, 3.6 Hz, 1H), δ 6.94 (d, J = 3.7 Hz, 1H), δ 2.30 (s, 6H); 13 C NMR (101 MHz, DMSO- d 6 ) δ 145.4, 136.6, 135.0, 134.01, 128.3, 124.9, 124.9, 124.3, 123.5, 110.1, 13.4, 10.5; HRMS (ESI) m/z calcd. for C 13 H 12 N 2 S 2 [MH] + 261.0520; found 261.0408.
Crystallographic data for1and3
PPT Slide
Lager Image
Crystallographic data for 1 and 3
Synthesis of 4-([2,2'-Bithiophen]-5-yl)-3,5-diphenyl-1H-pyrazole (3). The reaction procedure was similar to the preparation of compound 1 except using tert -butyl 4-iodo-3,5-diphenyl-1 H -pyrazole-1-carboxylate instead of tert -butyl 4-iodo-1 H -pyrazole-1-carboxylate. (Yield 49%) 1 H NMR (400 MHz, DMSO- d 6 ) δ 13.59 (s, 1H), δ 7.52 (m, 4H), δ 7.46 (dd, J = 5.1, 0.9 Hz, 1H), δ 7.37 (m, 6H), δ 7.26 (d, J = 3.6 Hz, 1H), δ 7.24 (dd, J = 3.6, 0.9 Hz, 1H), ä 7.04 (dd, J = 5.1 , 3.6 Hz, 1H), δ 6.92 (d, J = 3.7 Hz, 1H); 13 C NMR (101 MHz, DMSO- d 6 ) δ 137.3, 136.4, 133.5, 129.8, 129.0-128.4 (br), 128.3, 127.4, 125.3, 125.1, 124.2, 123.9, 108.3, 99.6; HRMS (ESI) m/z calcd. for C 23 H 16 N 2 S 2 [MH] + 385.0833; found 385.0685.
X-ray Crystallography. All X-ray crystallographic data were collected on a Nonius Kappa CCD diffractometer using a graphite monochromator with MoK α radiation (λ = 0.71073 Å). The data were collected at 153 K using an Oxford Cryostream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table 1 . Data reductions were performed using DENZO-SMN. 27 The structure was solved by direct methods and refined by full-matrix least-squares on F 2 with anisotropic displacement parameters for the non-H atoms using SHELXL-97. 28 The hydrogen atoms were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5 × Ueq for methyl hydrogen atoms). All the calculations were carried out with the SHELXTL pro-gram. 29
Acknowledgements
Supporting Information.Further details of the individual structures can be obtained from the Cambridge Crystallo-graphic Data Centre by quoting reference numbers CCDC 969009 for1and CCDC 969010 for3.
References
Muller-Dethlefs K. , Hobza P. 2000 Chem. Rev. 100 143 -
Lawrence D. S. , Jiang T. , Levett M. 1995 Chem. Rev. 95 2229 -
Riley K. E. , Pitonak M. , Jurecka P. , Hobza P. 2010 Chem. Rev. 110 5023 -
Zhou H.-X. , Gilson M. K. 2009 Chem. Rev. 109 4092 -
Jerey G. A. , Saenger W. 1991 Hydrogen Bonding in Biological Structures Springer-Verlag Berlin
Jerey G. A. 1997 An Introduction to Hydrogen Bonding Oxford University Press New York
Desiraju G. R. , Steiner T. 1999 The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press Inc New York
Etter M. C. 1990 Acc. Chem. Res. 23 120 -
Etter M. C. , MacDonald J. , Bernstein J. 1990 Acta Crystallogr. Sect. B B46 256 -
Bernstein J. , Etter M. C. , Leiserowitz L. 1994 The Role of Hydrogen Bonding in Molecular Assemblies, In Structure Correlations; Dunitz, J. D., Burgi, H.-B., Eds. VCH Weinheim
Bernstein J. , Davis R. E. , Shimoni, L. Chang N.-L. 1995 Angew. Chem. Int. Ed. 34 1555 -
Foces-Foces C. , Alkorta I. , Elguero J. 2000 Acta Crystallogr. Sect. B B56 1018 -
Hansch C. , Leo A. , Hoekman D. 1995 Exploring QSAR. Hydrophobic, Electronic, and Steric Constants American Chemical Society Washington
Infantes L. , Motherwell S. 2004 Struct. Chem. 15 173 -
Infantes L. , Motherwell S. 2004 Chem. Commun. 1166 -
Alkorta I. , Elguero J. , Foces-Foces C. , Infantes L. 2006 Arkivoc ii 15 -
Trofimenko S. 1972 Chem. Rev. 72 497 -
Mukherjee R. 2000 Coor. Chem. Rev. 203 151 -
Klingele J. , Dechert S. , Meyer F. 2009 Coor. Chem. Rev. 253 2698 -
Olguin J. , Brooker S. 2011 Coor. Chem. Rev. 255 203 -
La Cour T. , Rasmussen S. 1973 Acta Chem. Scand. 27 1845 -
Elguero J. , Fruchier A. , Pellegrin V. 1981 J. Chem. Soc., Chem. Commun. 1207 -
Anguilar-Parrilla F. , Cativiela C. , Diaz de Villegas M. D. , Elguero J. , Foces-Foces C. , Garcia J. I. , Cano F. H. , Limbach H.-H. , Smith J. A. S. , Toiron C. 1992 J. Chem. Soc. Perkin Trans. 2 1 -
Yee W. A. , Horwitz J. S. , Goldbeck R. A. , Einterz C. M. , Kilger D. S. 1983 J. Phys. Chem. 87 380 -
Rodriguez-Franco M. I. , Dorronsoro I. , Herandez-Higueras A. I. , Antequera G. 2001 Tetrahedron Lett. 42 863 -
Matharu A. S. , Cowling S. J. , Wright G. 2007 Liq. Cryst. 34 489 -
Otwinowski Z. , Mino W. 1997 In Methods in Enzymology, Macromolecular Crystallography, Part A; Carter, C. W., Sweet, R. M., Eds. Academic Press London
Sheldrick G. M. 1994 SHELXL97. Program for the Refinement of Crystal Structures University of Gottingen Germany
Sheldrick G. M. 1994 SHELXTL/PC (Version 5.03) Siemens Analytical X-ray Instruments, Inc. Madison, Wisconsin, USA