Advanced
Observation and Characterization of the Surface Plasmon Resonances of Platinum Nanoshells
Observation and Characterization of the Surface Plasmon Resonances of Platinum Nanoshells
Bulletin of the Korean Chemical Society. 2014. Mar, 35(3): 945-948
Copyright © 2014, Korea Chemical Society
  • Received : September 17, 2013
  • Accepted : September 26, 2013
  • Published : March 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Hyeri Lee
Jin-Ah Kwak
Du-Jeon Jang

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
For the synthesis of monodispersive SiO 2 nanospheres, 25.0 mL of ethanol(l), 4.5 mL of deionized water (> 17 MΩ cm), 0.4 mL of 25% NH 3 (aq), and 1.6 mL of tetraethyl orthosilicate (l, 99%) were mixed and kept under stirring for 1 h. Produced SiO 2 nanospheres were centrifuged with 10,000 rpm for 10 min and redispersed in 31.4 mL of ethanol three times. 27 , 28 Platinum seeds were prepared by mixing 10 mg of H 2 PtCl 6 (s, 99.995%) in 10.0 mL of 35% HCl(aq), 10.0 mL of 0.20 M NaBH4(aq), and 10.0 mL of 0.30 g L −1 PVP(aq) at once. The products were centrifuged at 10,000 rpm for 10 min and redispersed in 30.0 mL of ethanol three times. 29 In order to modify the surfaces of SiO 2 hard templates with amino groups, 10.0 mL of SiO 2 nanospheres- dispersed ethanol and 5.0 mL of 1.0 M (3-aminopropyl) triethoxysilane (l, 98%)-dissolved ethanol were mixed and kept under stirring for 2 h. Then, the reaction mixture was added with 5.0 mL of platinum seeds-dispersed ethanol and stirred for 1 h to attach platinum seeds on SiO 2 nanospheres. For the transformation of platinum seeds into platinum shells, 4.0 mL of 2 days-aged 10 mM H 2 PtCl 6 (aq) and 2.0 mL of the above mixture were mixed, stirred for 1 h, added with 0.32 mL of 100 mM L-ascorbic acid(aq), and stirred for 1 h. 30 Finally, 10.0 mL of HF(aq) and 1.0 mL of the above colloid were mixed and stirred for 2 min. 31 The produced hollow platinum nanospheres were centrifuged at 10,000 rpm for 10 min and redispersed in 1.0 mL of ethanol three times.
TEM images were measured with a Carl Zeiss LIBRA 120 microscope while SEM images with a JEOL JSM-6700F microscope. Extinction spectra were obtained using a Scinco S-3000 UV/vis spectrophotometer.
Acknowledgements
This work was supported by a research grant through the National Research Foundation (NRF) of Korea funded by the Korea government (2012-006345). D.J.J. is also thankful to the SRC program of NRF (2007- 0056095).
References
Kwak J.-A. , Lee D. K. , Jang D.-J. 2013 Appl. Catal. B 142 323 -
Kim Y. , Jang D.-J. 2013 Chem. Commun. 49 8940 -
Kim J.-Y. , Lee D. , Kim H. J. , Lim I. , Lee W. I. , Jang D.-J. 2013 J. Mater. Chem. A 1 5982 -
Kim S. J. , Ah C. S. , Jang D.-J. 2009 J. Nanopart Res. 11 2023 -
Armelao L. , Barreca D. , Bottaro G. , Gasparotto A. , Gross S. , Maragon C. , Tondello E. 2006 Coord. Chem. Rev. 205 1294 -
Kim S. J. , Ah C. S. , Jang D.-J. 2007 Adv. Mater. 19 1064 -
Lu H. M. , Meng X. K. 2010 J. Phys. Chem. C 114 1534 -
Kim M. R. , Lee D. K. , Jang D.-J. 2011 Appl. Catal. B 103 253 -
Kim M. R. , Kim S. J. , Jang D.-J. 2010 Cryst. Growth Des. 10 257 -
Kim M. R. , Jang D.-J. 2008 Chem. Commun. 5218 -
Liang A. , Liu Q. , Wen G. , Jiang Z. 2012 Trends Anal. Chem. 37 32 -
Lopatynski A. M. , Lopatynska O. G. , Jay Guo L. , Chegel V. I. 2011 IEEE. Sens. J. 11 361 -
Averitt R. D. , Westcott S. L. , Halas N. J. 1999 J. Opt. Soc. Am. B 16 1824 -
Kreibig U. , Vollmer M. 1995 Optical Properties of Metal Clusters Springe Press Berlin, Germany
Mie G. 1908 Ann. Phys. 25 377 -
Ghosh S. K. , Pal T. 2007 Chem. Rev. 107 4797 -
Aden A. L. , Kerker M. 1951 J. Appl. Phys. 22 1242 -
Noguez C. 2007 J. Phys. Chem. C 111 3806 -
Zhu S. , Zhou W. 2010 J. Nanomaterials 2010 1 -
Neeves A. E. , Birnboim M. H. 1989 J. Opt. Soc. Am. B 6 787 -
Lou X. W. , Archer L. A. , Yang Z. 2008 Adv. Mater. 20 3987 -
Zhu J. , Wang Y. , Huang L. , Lu Y. 2004 Phys. Lett. A 323 455 -
Mulvaney P. 1996 Langmuir 12 788 -
Penninkhof J. J. , Moroz A. , van Blaaderen A. , Polman A. 2008 J. Phys. Chem. C 112 4146 -
Jain P. K. , Huang X. , El-Sayed I. H. 2008 Acc. Chem. Rev. 41 1578 -
Evlyukhin A. B. , Kuznetsov A. I. , Novikov S. M. , Beermann J. , Reinhardt C. , Kiyan R. , Bozhevolnyi S. I. , Chichkov B. N. 2012 App. Phys. B 106 841 -
Stöber W. , Fink A. , Bohn E. 1968 J. Collid. Interf. Sci. 26 62 -
Kim M. R. , Kim J.-Y. , Kim S. J. , Jang D.-J. 2011 Appl. Catal. A 393 317 -
Calderone V. R. , Schutz-Widoniak J. , Bezemer G. L. , Bakker G. , Steurs C. , Philipse A. P. 2010 Catal. Lett. 137 132 -
Li J. , Yang C. , Zhang L. , Ma T. 2011 J. Organomet. Chem. 696 1845 -
Liu B. , Zhang W. , Feng H. , Yang X. 2011 Chem. Commun. 47 11727 -