Advanced
Microwave Assisted Synthesis of Cu<sub>2</sub>O Crystals with Morphological Evolution from Octapod to Octahedron
Microwave Assisted Synthesis of Cu2O Crystals with Morphological Evolution from Octapod to Octahedron
Bulletin of the Korean Chemical Society. 2014. Jan, 35(1): 309-312
Copyright © 2014, Korea Chemical Society
  • Received : October 22, 2013
  • Accepted : November 01, 2013
  • Published : January 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Young-Sik Cho
Young-Duk Huh

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental Section
CuCl 2 ·2H 2 O (99%, Aldrich), polyethylene glycol (PEG, Mw 20,000, Aldrich), D-(+)-glucose (ACS reagent, Aldrich), and N , N , N ', N '-tetramethyl ethylenediamine (TMEDA, 98%, TCI) were used as received, without any further purification. The experimental conditions for the preparation of Cu 2 O products with various morphologies are summarized in Table 1 . For the typical preparation of Cu 2 O product (sample number 9 in Table 1 ), 10 mL of a 0.125 M D-(+)-glucose aqueous solution and 6.0 g PEG were added to 138.1 mL of a 0.0362 M CuCl 2 ·2H 2 O aqueous solution, with stirring at room temperature for 30 min. Then, 1.86 mL TMEDA was added to the mixed solution. The reactants concentrations of CuCl 2 ·2H 2 O, D-(+)-glucose, TMEDA, and PEG are 33.3 mM, 8.33 mM, 83.3 mM, and 2.00 mM, respectively. To investigate the morphology evolution of the Cu 2 O products, the different amounts of CuCl 2 ·2H 2 O, D-(+)-glucose, TMEDA, and PEG were used, with keeping a constant relative amount of reactants. The total volume of the aqueous solution was fixed to 150 mL. A final mixed solution in an open beaker was placed into a commercial microwave oven (Magic MWO-230KD, 2.45 GHz, 800 W). We used the open reaction system for the safety free from unexpected explosion. The microwave was operated for just 2 min. The final temperature of the mixed solution was increased to approximately 80 ℃. After finishing the microwave irradiation, the reacted solution was placed in ice-water to quench the reaction quickly, for reducing the thermal heating effect on the Cu 2 O products. The powder forms of Cu 2 O products were obtained by using a centrifuge at 4000 rpm for 10 min. The Cu 2 O products were then washed several times with ethanol and water, and then dried at 60 ℃ for 12 h in a drying oven. The average yield for the preparation of Cu 2 O products is approximately 46%. The crystal structure of the Cu 2 O products was characterized by powder X-ray diffraction (XRD, PANalytical, X’pert-proMPD). The morphology of the Cu 2 O products was examined by using scanning electron microscopy (SEM, Hitachi S-4300).
References
Xu H. , Wang W. , Zhu W. 2006 J. Phys. Chem. B 110 13829 -    DOI : 10.1021/jp061934y
Mclaren A. , Valdes-Solis T. , Li G. , Tsang S. C. 2009 J. Am. Chem. Soc. 131 12540 -    DOI : 10.1021/ja9052703
Lee Y. J. , Kim S. , Park S. H. , Park H. , Huh Y. D. 2011 Mater. Lett. 65 818 -    DOI : 10.1016/j.matlet.2010.12.023
Kim M. J. , Kim S. , Park H. , Huh Y. D. 2011 Bull. Korean Chem. Soc. 32 3793 -    DOI : 10.5012/bkcs.2011.32.10.3793
Kuo C. H. , Huang M. H. 2010 Nano Today 5 106 -    DOI : 10.1016/j.nantod.2010.02.001
Gou L. , Murphy C. J. 2003 Nano Lett. 3 231 -    DOI : 10.1021/nl0258776
Chang Y. , Zeng H. C. 2004 Cryst. Growth Des. 4 273 -    DOI : 10.1021/cg034146w
Liu H. , Miao W. , Yang S. , Zhang Z. , Chen J. 2009 Cryst. Growth Des. 9 1733 -    DOI : 10.1021/cg800703n
Wang D. , Mo M. , Yu D. , Xu L. , Li F. , Qian Y. 2003 Cryst. Growth Des. 3 717 -    DOI : 10.1021/cg0340547
Zhang X. , Xie Y. , Xu F. , Xu D. , Liu H. 2004 Can. J. Chem. 82 1341 -    DOI : 10.1139/v04-108
Zhou W. , Yan B. , Cheng C. , Cong C. , Hu H. , Fan H. , Yu T. 2009 CrystEngComm 11 2291 -    DOI : 10.1039/b912034n
Hua Q. , Shang D. , Zhang W. , Chen K. , Chang S. , Ma Y. , Jiang Z. , Yang J. , Huang W. 2011 Langmuir 27 665 -    DOI : 10.1021/la104475s
Zhao X. , Bao Z. , Sun C. , Xue D. 2009 J. Cryst. Growth 311 711 -    DOI : 10.1016/j.jcrysgro.2008.09.081
Zhang D. F. , Zhang H. , Guo L. , Zheng K. , Han X. D. , Zhang Z. 2009 J. Mater. Chem. 19 5220 -    DOI : 10.1039/b816349a
Kuo C. H. , Huang M. H. 2008 J. Phys. Chem. C 112 18355 -    DOI : 10.1021/jp8060027
Choi K. S. 2008 Dalton Trans. 5432 -
Ho J. Y. , Huang M. H. 2009 J. Phys. Chem. C 113 14159 -    DOI : 10.1021/jp903928p
Prabhakaran G. , Murugan R. 2012 CrystEngComm 14 8338 -    DOI : 10.1039/c2ce26239h
Lee Y. J. , Huh Y. D. 2011 Mater. Res. Bull. 46 1892 -    DOI : 10.1016/j.materresbull.2011.07.031
Xu Z. , Li H. , Li W. , Cao G. , Zhang Q. , Li K. , Fu Q. , Wang J. 2011 Chem. Commun. 47 1166 -    DOI : 10.1039/c0cc03520c
Komarneni S. , Li D. , Newalkar B. , Katsuki H. , Bhalla A. S. 2002 Langmuir 18 5959 -    DOI : 10.1021/la025741n
Kim M. J. , Cho Y. S. , Park S. H. , Huh Y. D. 2012 Cryst. Growth Des. 12 4180 -    DOI : 10.1021/cg300681b
Xu J. , Xue D. 2007 Acta Mater. 55 2397 -    DOI : 10.1016/j.actamat.2006.11.032