Advanced
Dual-specificity Phosphatase 8 Promotes the Degradation of the Polyglutamine Protein Ataxin-1
Dual-specificity Phosphatase 8 Promotes the Degradation of the Polyglutamine Protein Ataxin-1
Bulletin of the Korean Chemical Society. 2014. Jan, 35(1): 297-300
Copyright © 2014, Korea Chemical Society
  • Received : October 01, 2013
  • Accepted : October 21, 2013
  • Published : January 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Do Hee Lee
Department of Biotechnology, College of Natural Science, Seoul Women’s University, Seoul 159-744, Korea
Sayeon Cho

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
Cell Culture and Transfection. Human embryonic kidney (HEK) 293T cells were maintained at 37 ℃ in DMEM supplemented with 10% fetal bovine serum and penicillin/streptomycin in the presence of 5% CO 2 . For transient transfection, 1.4 × 10 6 cells were plated in 60-mm cell culture plates, grown overnight, and transfected with various plasmid DNA using Lipofectamine TM reagent (Invitrogen)
Immunoblot Analysis. After 48 h of expression of Xpress-ataxin-1 and FLAG-DUSP proteins (for experiments studying the effects of the catalytic mutant of DUSP8, HA-ataxin-1 and GST-DUSP8 were employed), HEK293T cells were collected and then lysed in NP-40 lysis buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 0.5% NP-40) supplemented with Complete-MINI TM protease inhibitor mixture (Roche) for 20 min at 4 ℃, followed by centrifugation at 13,000 × g for 20 min. Immunoblot analysis using anti-Xpress antibody (1:2,000; Invitrogen), anti-FLAG antibody (1:1,000; Sigma) or anti-GST antibody (1:1,000; Sigma) were performed to determine the relative amounts of individual proteins. The protein bands were visualized using ECL detection system (PIERCE).
Fractionation of Cell Lysate. To analyze the relative amounts of ataxin-1 and DUSP8 in the soluble and insoluble fractions, HEK293T cells expressing Xpress-tagged ataxin-1 with or without FLAG-tagged DUSP8 were lysed in NP-40 lysis buffer, clarified by centrifugation at 1,000 × g for 10 min and then subjected to the second round of centrifugation at 20,000 × g for 30 min. The supernatants were collected and referred as the soluble fraction. The pellets, referred as the insoluble fraction, were washed three times with NP-40 lysis buffer and solubilized with an equal volume of 1 × SDS sample buffer. The relative amounts of individual proteins were determined by western-blot analysis.
Filter Retardation Assay. Filter retardation assay was performed using the protocol described in a previous study. 13 Cell lysate containing Xpress-tagged ataxin-1 was applied onto nitrocellulose membranes (0.2 μm; S & S) using a dot-blot microfiltration kit (Bio-Rad). The membranes were blocked in 5% non-fat dried milk in TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% Tween 20) for 1 h and subsequently incubated with anti-Xpress antibody. After washing membranes with TBST, the presence of ataxin-1 in large aggregates was detected by using ECL detection system.
Acknowledgements
We thank Dr. Joohyun Ryu and Ms. Jieun Bae for their valuable assistance in the experiments. This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (grant number 2010-0006080).
References
Patterson K. I. , Brummer T. , O'Brien P. M. , Daly R. J. 2009 Biochem. J. 418 475 -
Jeffrey K. L. , Camps M. , Rommel C. , Mackay C. R. 2007 Nat. Rev. Drug Discov. 6 391 -    DOI : 10.1038/nrd2289
Keyse S. M. 2008 Cancer Metastasis Rev. 27 253 -    DOI : 10.1007/s10555-008-9123-1
Rininger A. , Dejesus C. , Totten A. , Wayland A. , Halterman M. W. 2012 Cell Death Diff. 19 1634 -    DOI : 10.1038/cdd.2012.41
Okami N. , Narasimhan P. , Yoshioka H. , Sakata H. , Kim G. S. , Jung J. E. , Maier C. M. , Chan P. H. 2013 Cereb. Blood. Flow Metabol. 33 106 -    DOI : 10.1038/jcbfm.2012.138
Merienne K. , Helmlinger D. , Perkin G. R. , Devys D. , Trottier Y. 2003 J. Biol. Chem. 278 16957 -    DOI : 10.1074/jbc.M212049200
Dickinson R. J. , Keyse S. M. 2006 J. Cell Sci. 119 4607 -    DOI : 10.1242/jcs.03266
Oehrl W. , Cotsiki M. , Panayotou G. 2013 Cell Signal. 25 429 -    DOI : 10.1016/j.cellsig.2012.11.010
Palacios C. , Collins M. K. , Perkins G. R. 2001 Curr. Biol. 11 1439 -    DOI : 10.1016/S0960-9822(01)00426-2
Theodosious A. , Ashworth A. 2002 Oncogene 21 2387 -    DOI : 10.1038/sj.onc.1205309
Shao C. , Diamond M. I. 2007 Hum. Mol. Genet. 16 R115 -    DOI : 10.1093/hmg/ddm213
Lee D. H. , Cho S. 2013 Bull. Kor. Chem. Soc. 34 1909 -    DOI : 10.5012/bkcs.2013.34.6.1909
Cotsiki M. , Oehrl W. , Samiotaki M. , Theodosiou A. , Panayotou G. 2012 Cell Signal. 24 664 -    DOI : 10.1016/j.cellsig.2011.10.015
Worby C. A. , Gentry M. S. , Dixon J. E. 2008 J. Biol. Chem. 283 4069 -    DOI : 10.1074/jbc.M708712200
Gentry M. S. , Roma-Mateo C. , Sanz P. 2012 FEBS J. 280 525 -
Garyali P. , Siwach P. , Singh P. K. , Puri R. , Mittal S. , Sengupta S. , Parihar R. , Ganesh S. 2009 Hum. Mol. Genet. 18 688 -
Aguado C. , Sarkar S. , Korolchuck V. I. , Criado O. , Vernia S. , Boya P. , Sanz P. , Rodriguez de Cordoba S. , Knecht E. , Rubinsztein D. C. 2010 Hum. Mol. Genet. 19 2867 -    DOI : 10.1093/hmg/ddq190
Puri R. , Suzuki T. , Yamakawa K. , Ganesh S. 2012 Hum. Mol. Genet. 21 175 -    DOI : 10.1093/hmg/ddr452