Advanced
Ordered Mesoporous Carbon-MoO<sub>2</sub> Nanocomposite as High Performance Anode Material in Lithium Ion Batteries
Ordered Mesoporous Carbon-MoO2 Nanocomposite as High Performance Anode Material in Lithium Ion Batteries
Bulletin of the Korean Chemical Society. 2014. Jan, 35(1): 257-260
Copyright © 2014, Korea Chemical Society
  • Received : August 21, 2013
  • Accepted : October 01, 2013
  • Published : January 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Yuanyuan Zhou
Ilbok Lee
School of Integrative Engineering, Chung-Ang University, Seoul 156-756, Korea
Chul Wee Lee
Han Soo Park
School of Integrative Engineering, Chung-Ang University, Seoul 156-756, Korea
Hyungbin Son
School of Integrative Engineering, Chung-Ang University, Seoul 156-756, Korea
Songhun Yoon
School of Integrative Engineering, Chung-Ang University, Seoul 156-756, Korea

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
Preparation of TM materials has been reported in our previous work. 16 Briefly, self-made oligomeric resols, a cheap MoCl 5 and the commercialized surfactant (Pluronic® F127) were utilized to introduce an evaporation-induced selfassembly (EISA) reaction. With MoCl 5 reacting with the solvent ethanol, Mo=O bond forms, which enables the formation of hydrogen bonds between Mo-containing compound and the hydroxyl groups (-OH) of resols and the hydrophilic parts of F127. 9 , 10 The initial green color of MoCl 5 ethanol solution was turned into brown during the reaction with resols which was then converted to black after evaporation, reflecting the strong interaction between the reactant molecules. 8 , 9 After calcination in an inert atmosphere at 600 ℃, TMs, were obtained. Initially, 0.137 g (0.5 mmol), 0.273 g (1 mmol), 0.546 g (2 mmol) and 0.820 g (3 mmol) of MoCl 5 was reacted with 1 g of resol and 1.6 g of F127, and the corresponding samples were denoted as TM-0.5, TM-1, TM-2 and TM-3, respectively. The weight fraction of MoO 2 of the TM samples was determined by inductively coupled plasma (ICP) mass spectroscopy.
For the preparation of composite anodes, TM materials were mixed with a conducting agent (Super P) and polyvinylidene difluoride (PVDF) binder with a weight ratio of 8:1:1. The mixture was then dispersed in N -methylpyrrolidone (NMP) and spread on Cu foil (apparent areas of 1 cm 2 ), followed by pressing and drying at 120 ℃ for 12 h. Typical electrode loading and thickness was about 1.5 mg cm -2 and 50 μm, respectively. The half-cell characteristics were analyzed with a coin-type (CR2016) two-electrode cell in which lithium foil (Cyprus Co.) was used. The electrolyte was 1.0 M LiPF 6 in 1:1 (v/v) ethylene carbonate (EC)/ dimethyl carbonate (DMC) (Tomiyama Co.). To investigate the anode performance in a LIB, galvanostatic charge- discharge testing in a voltage range of 2.5 to 0 V vs. Li/Li + was conducted. For the rate performance measurement, the current was varied from 0.1 to 2 C. The cycle performance for 30 cycles was recorded at a 0.1 C rate. All of the electrochemical measurements were conducted using a WBCS-3000 battery cycler (WonATech Co.)
Acknowledgements
This research was supported by KRICT and Chung-Ang University Research Grants in 2013.
References
Poizot P. , Laruelle S. , Grugeon S. , Dupont L. , Tarascon J.-M. 2000 Nature 407 496 -    DOI : 10.1038/35035045
Zhou Y. , Kim Y. , Jo C. , Lee J. , Lee C. W. , Yoon S. 2011 Chem. Commun. 47 4944 -    DOI : 10.1039/c1cc10539f
Lou X. W. , Zeng H. C. 2003 J. Am. Chem. Soc. 125 2697 -    DOI : 10.1021/ja029086h
Sun Y. , Hu X. , Yu J. C. , Li Q. , Yuan L. , Zhang W. , Huang Y. 2011 Energy Environ. Sci. 4 2870 -    DOI : 10.1039/c1ee01189h
Shi Y. , Guo B. , Corr S. A. , Hu Y.-S. , Heier K. R. , Chen L. , Seshadri R. , Stucky G. D. 2009 Nano Lett. 9 4215 -    DOI : 10.1021/nl902423a
Brezesinski T. , Wang J. , Tolbert S. H. , Dunn B. 2010 Nat. Mater. 9 146 -    DOI : 10.1038/nmat2612
Zhou Y. , Lee C. W. , Yoon S. 2011 Electrochem. Solid-State Lett. 14 1 -
Liu R. , Ren Y. , Shi Y. , Zhang F. , Zhang L. , Tu B. , Zhao D. Y. 2008 Chem. Mater. 20 1140 - 1146    DOI : 10.1021/cm071470w
Liu R. , Shi Y. , Wan Y. , Meng Y. , Zhang F. , Gu D. , Chen Z. , Tu B. , Zhao D. 2006 J. Am. Chem. Soc. 128 11652 -    DOI : 10.1021/ja0633518
Limberg C. , Boese R. , Schiemenz B. 1997 J. Chem. Soc., Dalton Trans. 1633 -
Choi J.-G. , Thompson L. T. 1996 Appl. Surf. Sci. 93 143 -    DOI : 10.1016/0169-4332(95)00317-7
Ozkan E. , Lee S.-H. , Liu P. , Tracy C. E. , Tepehan F. Z. , Pitts J. R. , Deb S. K. 2002 Solid State Ionics 149 139 -    DOI : 10.1016/S0167-2738(02)00143-1
Zhou H. , Zhu S. , Hibino M. , Honma I. , Ichihara M. 2003 Adv. Mater. 15 2107 -    DOI : 10.1002/adma.200306125
Li H.-Q. , Liu R.-L. , Zhao D. Y. , Xia Y.-Y. 2007 Carbon 45 (13) 2628 -    DOI : 10.1016/j.carbon.2007.08.005
Ku J. H. , Jung Y. S. , Lee K. T. , Kim C. H. , Oh S. M. 2009 J. Electrochem. Soc. 156 (8) A688 -    DOI : 10.1149/1.3141670
Zhou Y. , Lee C. W. , Kim S.-K. , Yoon S. 2012 ECS Electrochem. Lett. 1 A17 -    DOI : 10.1149/2.013201eel
Jo C. , Hwang J. , Song H. , Dao A. H. , Kim Y.-T. , Lee S. H. , Hong S. W. , Yoon S. , Lee J. 2013 Adv. Funct. Mater. 23 3747 -    DOI : 10.1002/adfm.201202682
Katrib A. , Sobczak J. W. , Krawczyk M. , Zommer L. , Benadda A. , Jablonski A. , Maire G. 2002 Surf. Interface Anal. 34 225 -    DOI : 10.1002/sia.1288
Zhou Y. , Jo C. , Lee J. , Lee C. W. , Qao G. , Yoon S. 2012 Micropor. Mesopor. Mater. 151 172 -    DOI : 10.1016/j.micromeso.2011.10.040
Zhou Y. , Lee J. , Lee C. W. , Wu M. , Yoon S. 2012 hemSusChem 5 2376 -    DOI : 10.1002/cssc.201200450
Naumkin A. V. , Kraut-Vass Anna , Gaarenstroom S. W. , Powell C. J. 0000 NIST Standard Reference Database 20 20899 -