Advanced
Lipoxygenase Inhibitory Effects of Dibenzylbutane Lignans from the Seeds of Myristica fragrans (Nutmeg)
Lipoxygenase Inhibitory Effects of Dibenzylbutane Lignans from the Seeds of Myristica fragrans (Nutmeg)
Bulletin of the Korean Chemical Society. 2014. Oct, 35(10): 3095-3098
Copyright © 2014, Korea Chemical Society
  • Received : May 30, 2014
  • Accepted : June 13, 2014
  • Published : October 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Hyun Sook Kwon
Soo Jeong Cho
Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea
Tae Joung Ha
Department of Functional Crop, National Institute of Crop Science, RDA, Miryang 627-803, Korea
Amaravadhi Harikishore
Division of Chemical Biology & BioTechnology, Nanyang Technological University, Singapore 637551
Ho Sup Yoon
Division of Chemical Biology & BioTechnology, Nanyang Technological University, Singapore 637551
Ki Hun Park
Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea
Il Suk Kim
Dae Sik Jang
Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 130-701, Korea

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
General. Soybean lipoxygenase-1 (EC 1.13.11.12, Type 1), linoleic acid and Tween-20 were purchased from Sigma (Sigma Chemical Co, St. Louis, MO, USA). Compounds 1-7 were obtained from our previous work. 7 NDGA (nordihydroguaiaretic acid) was purchased from Aldrich (Milwaukee, WI, USA). All reagent grade chemicals were purchased from Sigma (St. Louis, MO, USA).
Enzyme Assay. The enzyme assay was performed as previously reported 21 with a slight modification. Briefly, 10 μL of an ethanolic inhibitor solution was mixed with 60 μL of 1 mM stock solution of linoleic acid and 2.925 mL of 0.1 M Tris-HCl buffer (pH 8.0) in a quartz cuvette. Then, 5 μL of a 0.1 M Tris-HCl buffer solution (pH 8.0) of lipoxygenase (1.02 μM) was added. The resultant solution was mixed well followed by reading at 234 nm for 5 min, which represents the formation of conjugated diene hydroperoxide (13-HPOD, ε = 25000 M −1 cm −1 ). A lag-period shown in the lipoxygenase reaction 22 was excluded for the determination of initial rates. The stock solution of linoleic acid was prepared with methanol and Tris-HCl buffer at pH 8.0, then total methanol content in the final assay was adjusted below 1.5%. Two concentrations (20 and 40 μM) of linoleic acid were selected for Dixon plots. The assay was conducted in triplicate of separate experiments. The data analysis was performed by using Sigma Plot 2000 (SPSS Inc., Chicago, IL). The inhibitory concentration leading to 50% activity loss (IC 50 ) was obtained by fitting experimental data to the logistic curve by the equation as follows:
Activity (%) = 100 [1/(1+([I]/IC50))]
Inhibition mode was analyzed by Enzyme Kinetics Module 1.0 (SPSS Inc.) equipped with Sigma Plot 2000.
Molecular Docking. All the simulations were performed on Linux workstations using InsightII 2005 software package (Accelrys, CA, USA). The crystal structure of soybean lipoxygenase-1 (PDB ID: 1YGE) determined at 1.4 Å resolution 23 was used for the molecular docking studies. Hydrogens, charges and potentials were assigned using the CVFF force field and the protein was energy minimized. For the ligand preparation, DDGA ( 7 ) and MDGA ( 3 ) were sketched with the help of Builder module in InsightII 2005. Then the charges & potentials were assigned using CVFF forcefield and the minimization was done using the Discover module in InsightII 2005 with 1000 steps of steepest descents followed by 5000 steps of conjugate gradients. For molecular docking, the program GOLD (Genetic Optimisation for Ligand Docking, Cambridge Crystallographic Data Centre, UK) 24 was employed to dock the DDGA ( 7 ) and MDGA ( 3 ) into the substrate binding site of soybean lipoxygenase. Active site radius of 10.0 Ǻ was defined from the Fe metal atom coordinated to H499, H504, H690, N694, I839 residues. The RMS deviation was considered within 1.5 Ǻ and the annealing parameter of van der vaals interaction was 4.0 Ǻ, hydrogen bond interaction was 2.5 Ǻ.
Acknowledgements
This work was supported by grants from the Priority Research Centers Program (2012-0006683) of the Ministry of Education, Science and Technology, republic of Korea and by a grant from the Bio-Synergy Research Project (NRF-2013M3A9C4078145) of the Ministry of Science, ICT and Future Planning through the National Research Foundation.
References
Calliste C. A. , Kozlowski D. , Duroux J. L. , Champavier Y. , Chulia A. J. , Trouillas P. 2010 Food chem 118 489 -    DOI : 10.1016/j.foodchem.2009.05.010
Chung J. Y. , Choo J. H. , Lee M. H. , Hwang J. K. 2006 Phytomedicine 13 261 -    DOI : 10.1016/j.phymed.2004.04.007
Jin D.-Q. , Lim C. S. , Hwang J. K. , Ha I. , Han J.-S. 2005 Commun 331 1264 -
Yang S. , Na M. K. , Jang J. P. , Kim K. A. , Kim B. Y. , Sung N. J. , Oh W. K. , Ahn J. S. 2006 Phytother. Res. 20 680 -    DOI : 10.1002/ptr.1935
Morita T. , Jinno K. , Kawagishi H. , Arimoto Y. , Suganuma H. , Inakuma T. , Sugiyama K. 2003 J. Agric. Food Chem. 51 1560 -    DOI : 10.1021/jf020946n
Anas Subarnas A. , Apriyantono A. , Mustarichie R. 2010 Int. J. Mol. Sci. 11 4771 -    DOI : 10.3390/ijms11114771
Kwon H. S. , Kim M.-J. , Jeong H. J. , Yang M. S. , Park K. H. , Jeong T.-S. , Lee W. S. 2008 Bioorg. Med. Chem. Lett. 18 194 -    DOI : 10.1016/j.bmcl.2007.10.098
Maeda A. , Tanimoto S. , Abe T. , Kazama S. , Tanizawa H. , Nomura M. 2008 Yakugaku Zasshi 128 129 -    DOI : 10.1248/yakushi.128.129
Cornicelli J. A. , Trivedi B. K. 1999 Curr. Pharm. Des. 5 11 -
Kris-Etherton P. M. , Keen C. L. 2002 Curr. Opin. Lipidol. 13 41 -    DOI : 10.1097/00041433-200202000-00007
Grechkin A. 1998 Prog. Lipid Res. 37 317 -    DOI : 10.1016/S0163-7827(98)00014-9
Richard-Forget F. , Gauillard F. , Hugues M. , Jean-Marc T. , Boivin P. , Nicolas J. 1995 J. Food Sci. 60 1325 -    DOI : 10.1111/j.1365-2621.1995.tb04583.x
Berry H. , Debat H. , Larreta-Garde V. 1997 FEBS Lett 408 324 -    DOI : 10.1016/S0014-5793(97)00453-5
Schilstra M. J. , Veldink G. A. , Verhagen J. , Vliegenthart J. F. 1992 Biochemistry 31 7692 -    DOI : 10.1021/bi00148a033
Minor W. , Steczko J. , Stec B. , Otwinowski Z. , Bolin J. T. , Walter R. , Axelrod B. 1996 Biochemistry 35 10687 -    DOI : 10.1021/bi960576u
Skrzypczak-Jankun E. , Amzel L. M. , Kroa B. A. , Funk M. O. 1997 Proteins 29 15 -    DOI : 10.1002/(SICI)1097-0134(199709)29:1<15::AID-PROT2>3.0.CO;2-E
Tomchick D. R. , Phan P. , Cymborowski M. , Minor W. , Holman T. R. 2001 Biochemistry 40 7509 -    DOI : 10.1021/bi002893d
Andreou A. , Feussner I. 2009 Phytochemistry 70 1504 -    DOI : 10.1016/j.phytochem.2009.05.008
Skrzypczak-Jankun E. , Bross R. A. , Carroll R. T. , Dunham W. R. , Funk M. O. 2001 J. Am. Chem. Soc. 123 10814 -    DOI : 10.1021/ja011759t
Skrzypczak-Jankun E. , Zhou K. , Jankun J. 2003 Int. J. Mol. Med. 12 415 -
Rickert K. W. , Klinman J. P. 1999 Biochemistry 38 12218 -    DOI : 10.1021/bi990834y
Ruddat V. C. , Whitman S. , Holman T. R. , Bernasconi C. F. 2003 Biochemistry 42 4172 -    DOI : 10.1021/bi020698o
Minor W. , Steczko J. , Stec B. , Otwinowski Z. , Bolin J. T. , Walter R. , Axelrod B. 1996 Biochemistry 35 10687 -    DOI : 10.1021/bi960576u
Jones G. , Willett P. , Glen R. C. , Leach A. R. , Taylor R. 1997 J. Mol. Biol. 267 727 -    DOI : 10.1006/jmbi.1996.0897