Advanced
Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation
Cd(II) and Zn(II) Complexes Containing N,N'-Bidentate N-(Pyridin-2-ylmethylene)cyclopentanamine: Synthesis, Characterisation and Methyl Methacrylate Polymerisation
Bulletin of the Korean Chemical Society. 2014. Oct, 35(10): 2929-2934
Copyright © 2014, Korea Chemical Society
  • Received : April 14, 2014
  • Accepted : June 07, 2014
  • Published : October 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Yujin Song
Dongil Kim
Ha-Jin Lee
Jeonju Center, Korea Basic Science Institute (KBSI), Jeonju-city 561-180, Korea
Hyosun Lee

Abstract
The reaction between [CdBr2·4H2O] and anhydrous [ZnCl2] with N,N' -bidentate N -(pyridin-2-ylmethylene)-cyclopentanamine ( impy ) in ethanol yields dimeric [(impy)Cd(μ-Br)Br]2 and monomeric [(impy)ZnCl2] complexes, respectively. The X-ray crystal structure of Cd(II) and Zn(II) complexes revealed that the cadmium atom in [(impy)Cd(μ-Br)Br]2 and zinc in [(impy)ZnCl2] formed a distorted trigonal–bipyramidal and tetrahedral geometry, respectively. Both complexes showed moderate catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO), with polymethylmethacrylate (PMMA) syndiotacticity of about 0.70.
Keywords
Introduction
Transition metal complexes containing ancillary ligands, pyridyl-imines and N -substituted 2-iminoalkylpyridines have been applied for synthetic, spectroscopic and kinetic studies, 1-10 photoluminescence and photochemistry, 11 as catalysts for organic transformation, 12-18 electrochemistry, 19-21 bioinorganic chemistry, 22,23 supramolecular chemistry, 24,25 molecular magnetism 26-29 and olefin polymerisation. 30-44 In contrast, poly(methylmethacrylate) (PMMA) is a universal polymer with optical applications. In general, a higher glass transition temperature (T g ) represents a higher optical quality and increased syndiotacticity of PMMA. On the other hand, isotactic PMMA, however, which is commercially produced using conventional radical processes, has a T g around 65 °C. However, radical-mediated polymerisation of methyl methacrylate (MMA) cannot achieve an enough high T g or high content of syndiotaticity in PMMA. Thus, studies on nonradical-mediated MMA polymerisation, which able to produce a higher T g up to 140 °C, have been performed, and some transition metal complexes have successfully been applied to this process. 45-53 Recently, we explored the development of transition metal complexes as catalysts for homogeneous polymerisation of MMA to produce syndiotactic PMMA. Although the ligand impy has been applied to rhenium, copper, palladium and platinum complexes, rhenium and copper complexes did not utilized as catalyst for MMA polymerisation. 4,54,55 Previously, we reported the palladium and platinum complexes with N -cyclopentyl-1-(pyridin-2-yl)methanimine ( impy ), in which Pd(II) complex demonstrated a very high activity for MMA polymerisation. 54 Thus, we have prepared zinc and cadmium complexes containing the impy to get the higher activity than Pd(II) complexes for the MMA polymerisation. The impy was obtained from the condensation reaction between cyclopentylamine and 2-picolylcarbaldehyde in dichloromethane ( Scheme 1 ). Dimeric [(impy)Cd(μ-Br)Br]2 (88%) and monomeric [(impy)ZnCl2] (96%) complexes were obtained from impy with CdBr 2 ·4H 2 O and anhydrous ZnCl 2 , respectively, in anhydrous ethanol. 1 H-NMR peaks of both complexes were shifted to low field by approximately δ 0.3 compared with impy , while 13 C-NMR peaks of the both complexes were shifted to low field by approximately δ 6 compared with ligand.
PPT Slide
Lager Image
Synthesis of ligand (impy) and complexes [(impy)Cd(μ-Br)Br]2 and [(impy)ZnCl2].
A single crystal suitable for X-ray analysis was obtained from diethyl ether diffusion in DMF for [(impy)Cd(μ-Br)Br]2 and acetone for [(impy)ZnCl2] solution. Crystal data and structure refinement of [(impy)Cd(μ-Br)Br]2 and [(impy)ZnCl2] are listed in Table 1 . ORTEP drawings of the complexes are shown in Figure 1 ( [(impy)Cd(μ-Br)Br]2 ) and Figure 2 ( [(impy)ZnCl2] ). The selected bond lengths and angles were listed in Table 2 .
Crystal data and structural refinement for[(impy)Cd(μ-Br)Br]2and[(impy)ZnCl2]
PPT Slide
Lager Image
Crystal data and structural refinement for [(impy)Cd(μ-Br)Br]2 and [(impy)ZnCl2]
PPT Slide
Lager Image
Molecular structure of [(impy)Cd(μ-Br)Br]2 with thermal ellipsoids at 50% probability. The hydrogen atom was omitted for clarity.
PPT Slide
Lager Image
Molecular structure of [(impy)ZnCl2] with thermal ellipsoids at 50% probability. The hydrogen atom was omitted for clarity.
Selected bond lengths (Å) and angles (°) of[(impy)Cd(μ-Br)Br]2and[(impy)ZnCl2]
PPT Slide
Lager Image
Selected bond lengths (Å) and angles (°) of [(impy)Cd(μ-Br)Br]2 and [(impy)ZnCl2]
The bond lengths of Cd-N pyridine and Cd-N imine in [(impy)Cd(μ-Br)Br]2 were 2.330(11) Å and 2.358(11) Å, respectively. In general, the bond lengths of Pd-N pyridine were shorter than those of Pd-N imine due to the different basicity of imine and pyridine moieties. However, those in [(impy)ZnCl2] were 2.083(3) Å and 2.068(3) Å, respectively. The double bond of imine N(2)-C(6) of 1.288(17) Å ( [(impy)Cd(μ-Br)Br]2 ) and 1.277(5) Å ( [(impy)ZnCl2] ) were in the range of accepted carbon-nitrogen double bonds. The C(5)-C(6) bond distance of [(impy)Cd(μ-Br)Br]2 and monomeric [(impy)ZnCl2] was 1.455(19) Å and 1.475(6) Å, respectively, reflecting delocalised π -electrons. In [(impy)Cd(μ-Br)Br]2 , the Cd–Br terminal bond [2.5700(18) Å] was shorter than the two Cd–Br bridge bonds [2.6711(17) Å and 2.7786(17) Å]. The angles of N(1)–Zn–N(2) and Cl(1)–Zn–Cl(2) in [(impy)ZnCl2] were 80.63 (14)° and 115.41(5)°, respectively, indicative of a distorted tetrahedral geometry. The N(1)–Cd(1)–N(2), N(1)–Cd(1)–Br(2#), Br(1)–Cd(1)–Br(2#), Br(1)–Cd(1)–Br(2), N(2)–Cd(1)–Br(2), and Br(2)–Cd(1)–Br(2#) angles for the complex [(impy)Cd(μ-Br)Br]2 were 71.9(4)°, 87.8(3)°, 103.58(6)°, 115.43(6)°, 94.7(3)° and 84.76(5)°, respectively. Thus, it showed a distorted square pyramidal geometry with N,N' -bidentate, two bridge bromides and one terminal bromide, achieving a five-coordinated complex. Note that the xz -plane of cyclopentyl rings in the impy of both complexes was distorted by approximately 90° with respect to the xy -plane of the pyridine ring and metal center.
[(impy)Cd(μ-Br)Br]2 and [(impy)ZnCl2] were activated by modified methylaluminoxane (MMAO) to polymerise MMA, yielding PMMA with T g 120 °C and 126 °C, respectively ( Table 3 ). The triad microstructure [isotactic ( mm , δ 0.85), atatic ( mr , δ 1.02) and syndiotactic ( rr , δ 1.21)] of PMMA was analysed using 1 H-NMR spectroscopy. 59 To confirm the catalytic activity of MMA polymerisation, blank polymerisation of MMA was performed with anhydrous CdCl 2 , ZnCl 2 and MMAO at 60 °C, respectively. The catalytic activities of [(impy)Cd(μ-Br)Br]2 (4.10 × 10 4 gPMMA/molCd·h) and [(impy)ZnCl2] (2.07 × 10 4 gPMMA/molZn·h) were similar to the metal starting materials: CdCl 2 (3.53 × 10 4 gPMMA/molCd·h) and ZnCl 2 (1.73 × 10 4 gPMMA/molZn·h). Since the corresponding Pd(II) complex, [(impy)PdCl2] , showed very high activity of 14.5 × 10 4 gPMMA/molPd·h at 60 °C compared to reference complex PdCl 2 (1.97 × 10 4 gPMMA/molPd·h) 54 thus, impy , which effectively generates an electron-rich cloud around the palladium metal and imparts steric hindrance in [(impy)PdCl2] to make an active spices during MMA polymerisation, does not affect the Cd(II) and Zn(II) complexes. The syndiotacticity of PMMA was around 70%, which was similar to both Cd(II) and Zn(II) complexes and [(impy)PdCl2] . Moreover, the moderate syndiotacticity was not sufficient to confer a coordination polymerisation mechanism for both Cd(II) and Zn(II) complexes and [(impy)PdCl2] . Thus, we clearly did not observe steric or electronic effects of impy on cadmium and zinc metals in both of [(impy)Cd(μ-Br)Br]2 and [(impy)ZnCl2] to improve the activity and syndiotacticity of MMA polymerisation.
MMA polymerisation by[(impy)Cd(μ-Br)Br]2and[(impy)ZnCl2]in the presence of MMAO
PPT Slide
Lager Image
a[M(II) catalyst]0 = 15 μmol, and [MMA]0/[MMAO]0/[M(II) catalyst]0 = 3100:500:1. bYield defined a mass of dried polymer recovered/mass of monomer used. cActivity is g of PMMA/(molM·h) at polymerisation temperature of 60 °C. dTg is glass transition temperature which is determined by a thermal analyzer. eDetermined by gel permeation chromatography (GPC) eluted with THF at room temperature by filtration with polystyrene calibration. fMn refers the number average of molecular weights of PMMA. gIt is a blank polymerisation in which anhydrous CdCl2, ZnCl2 and PdCl2 were also activated by MMAO. hIt is a blank polymerisation which was done solely by MMAO. ipolymerisation time was 0.5 h at 60 °C.54
In summary, the iminopyridyl-containing dimeric [(impy)Cd(μ-Br)Br]2 and monomeric [(impy)ZnCl2] have been prepared and structurally characterised. The coordination geometry around cadmium atom in [(impy)Cd(μ-Br)Br]2 and zinc in [(impy)ZnCl2] showed a distorted square pyramidal and tetrahedral coordination, respectively. Both complexes have shown moderate catalytic activity for the polymerisation of MMA in the presence of MMAO with PMMA syndiotacticity characterized by 1 H NMR spectroscopy, which value was ca . 0.70.
Experimental
Materials and Instrumentation. CdBr 2 ·4H 2 O, anhydrous ZnCl 2 , picolinaldehyde, cyclopentylamine and methyl methacrylate (MMA) were purchased from Aldrich and anhydrous solvents such as C 2 H 5 OH, DMF, diethyl ether, dichloromethane were purchased from Merck and used without further purification. Modified methylaluminoxane (MMAO) was purchased from Tosoh Finechem Corporation as 6.9% weight aluminum of a toluene solution and used without further purification. Elemental analyses (C, H, N) of the prepared complexes were carried out on an elemental analyzer (EA 1108; Carlo-Erba, Milan, Italy). 1 H NMR (operating at 400 MHz) and 13 C NMR (operating at 100 MHz) spectra were recorded on a Bruker Advance Digital 400 NMR spectrometer; chemical shifts were recorded in ppm units (δ) relative to SiMe 4 as the internal standard. Electronic absorption spectra were obtained on an Ocean Optics USB4000 spectrophotometer (Ocean Optics, Dunedin, FL). Infrared (IR) spectra were recorded on Bruker FT/IR-Alpha (neat) and the data are reported in reciprocal centimeters. The molecular weight and molecular weight distribution of the obtained polymethylmethacrylate (PMMA) were carried out using gel permeation chromatography (GPC) (CHCl 3 , Alliance e2695; Waters Corp., Milford, MA). Glass transition temperature (T g ) was determined using a thermal analyzer (Q2000; TA Instruments, New Castle, DE).
Synthesis of Cd(II)and Zn(II) Complexes. N -Cyclopentyl-1-(pyridin-2-yl)methanimine ([ N -(pyridin-2-ylmethylene)-cyclopentanamine]) ( impy ) was synthesized previously in the literatures. 4,54,55
N-Cyclopentyl-1-(pyridin-2-yl)methanimine(dichloro)-cadmium(II) bromide ([(impy)Cd(μ-Br)Br]2). A solution of impy (174 mg, 1.00 mmol) in anhydrous ethanol (10.0 mL) was added to a solution of CdBr 2 ·4H 2 O (344 mg, 1.00 mmol) in dried ethanol (10.0 mL) at room temperature. Precipitation of white material occurred while stirring at room temperature for 12 hours. The white powder was filtered and washed with ethanol (25.0 mL × 2), followed by washing with diethyl ether (25.0 mL × 2) (0.790 g, 88.0%). The X-ray crystal of [(impy)Cd(μ-Br)Br]2 was obtained within three days from diethyl ether (10.0 mL) diffusion into an DMF solution (10.0 mL) of [(impy)Cd(μ-Br)Br]2 (50.0 mg). Analysis calculated for C 22 H 28 N 4 Br 4 Cd 2 : C, 29.6%; H, 3.16%; N, 6.27%. Found: C, 29.8%; H, 3.20%; N, 6.26%. 1 H-NMR (DMSO- d 6 , 400 MHz) δ 8.86 (d, 2H, J = 4.8 Hz, -NC 5 H 4 -), 8.64 (s, 2H, -N=CH-NC 5 H 4 -), 8.19 (t, 2H, J = 9.8 Hz, -NC 5 H 4 -), 7.98 (d, 2H, J = 8.0 Hz, -NC 5 H 4 -), 7.78 (t, 2H, J = 6.2 Hz, -NC 5 H 4 -), 4.11 (m, 2H, -C 5 H 9 -), 1.93-1.86 (m, 8H, -C 5 H 9 -), 1.73-1.57 (m, 8H, -C 5 H 9 -). 13 C-NMR (DMSO- d 6 , 100 MHz) δ 159.42(s, 2C, -N=CH-NC 5 H 4 -), 150.15 (s, 2C, ipso -NC 5 H 4 -), 147.76 (s, 2C, -NC 5 H 4 -), 140.96 (s, 2C, -NC 5 H 4 -), 128.47 (s, 2C, -NC 5 H 4 -), 128.21 (s, 2C, -NC 5 H 4 -), 70.13 (s, 2C, ipso -C 5 H 9 -), 33.13 (s, 4C, -C 5 H 9 -), 24.38 (s, 4C, -C 5 H 9 -). IR (solid neat; cm −1 ): 3086 (w), 2884 (w), 2806 (w), 2708 (w), 2614 (w), 2230 (w), 1941 (w), 1777 (s), 1650 (s), 1530 (s), 1444 (w), 1322 (s), 1172 (s), 1089 (s), 1017 (s), 932 (w), 861 (s), 774 (s).
N-Cyclopentyl-1-(pyridin-2-yl)methanimine(dichloro)-zinc(II) chloride ([(impy)ZnCl2]). A solution of impy (87.0 mg, 0.500 mmol) in anhydrous ethanol (10.0 mL) was added to a solution of anhydrous ZnCl 2 (68.0 mg, 0.500 mmol) in dried ethanol (10.0 mL) at room temperature. Precipitation of white material occurred while stirring at room temperature for 12 hours. The white powder was filtered and washed with ethanol (25.0 mL × 2), followed by washing with diethyl ether (25.0 mL × 2) (0.150 g, 96.6%). The X-ray crystal of [(impy)ZnCl2] was obtained within three days from diethyl ether (10.0 mL) diffusion into an acetone solution (10.0 mL) of [(impy)ZnCl2] (50.0 mg). Analysis calculated for C 11 H 14 N 2 Cl 2 Zn: C, 42.5%; H, 4.54%; N, 9.02%. Found: C, 42.1%; H, 4.54%; N, 8.86%. 1 H-NMR (DMSO- d 6 , 400 MHz) δ 8.79 (d, 1H, J = 3.6 Hz, -NC 5 H 4 -), 8.59 (s, 1H, -N=CH-NC 5 H 4 -), 8.15 (t, 1H, J = 3.8 Hz, -NC 5 H 4 -), 8.03 (d, 1H, J = 7.6 Hz, -NC 5 H 4 -), 7.72 (t, 1H, J = 7.4 Hz, -NC 5 H 4 -), 4.07 (m, 1H, -C 6 H 11 -), 1.87-1.84 (m, 4H, -C 5 H 9 -), 1.72-1.63 (m, 4H, -C 5 H 9 -). 13 C-NMR (DMSO- d 6 , 100 MHz) δ 160.41 (s, 1C, -N=CH-NC 5 H 4 -), 149.85 (s, 1C, ipso -NC 5 H 4 -), 141.30 (s, 1C, -NC 5 H 4 -), 128.61 (s, 1C, -NC 5 H 4 -), 126.80 (s, 1C, -NC 5 H 4 -), 110.77 (s, 1C, -NC 5 H 4 -), 69.24 (s, 1C, ipso -C 5 H 9 -), 33.42 (s, 2C, -C 5 H 9 -), 24.54 (s, 2C, -C 5 H 9 -). IR (solid neat; cm −1 ): 3102 (w), 3024 (w), 2376 (s), 2313 (s), 2178 (w), 1750 (s), 1694 (s), 1649 (s), 1525 (s), 1217 (w), 1091 (s), 1023 (s), 944 (w), 775 (s), 713 (w), 643 (s).
Catalytic Activity for MMA Polymerisation. Methyl methacrylate (MMA) was extracted with 10% sodium hydroxide, washed with water, dried over magnesium sulfate, and distilled over calcium hydride under reduced pressure before use. To a 100-mL Schlenk flask containing [(impy)Cd(μ-Br)Br]2 (6.7 mg, 15 mmol) or [(impy)ZnCl2] (4.7 mg, 15 mmol) in toluene (10.0 mL) was added MMAO (modified methylaluminoxane, 6.9 wt % in toluene, 3.25 mL, [MMAO] 0 /[M(II) catalyst] 0 = 500) under a dry argon atmosphere. After the mixture had been stirred at 60 °C for 20 minutes, it was transferred into MMA (5.0 mL, 47.1 mmol, [MMA] 0 /[M(II) catalyst] 0 = 3100). Then, the reaction flask was immersed in an oil bath at 60 °C and stirred for 2 hours. The resulting polymer was precipitated in methanol (400 mL) and HCl (3 mL) was added with stirring for 10 minutes. The polymer was filtered and washed with methanol (400 mL × 3) to give poly methyl methacrylate (PMMA), which was vacuum-dried at 60 °C.
X-ray Crystallographic Studies. The crystal was picked up with paratone- N oil and mounted on a Bruker SMART CCD diffractometer equipped with a graphite-monochromatic MoKα ( λ = 0.71073 Å) radiation source and a nitrogen cold stream (200 K). Data collection and integration were performed with SMART and SAINT-Plus. 56 Semiempirical absorption corrections based on equivalent reflections were applied by SADABS. 57 The structure was solved by direct methods and refined by full-matrix least-squares on F 2 using SHELXTL. 58 All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions.
Acknowledgements
This research was supported by Kyungpook National University Research Fund, 2013.Supplementary Material.CCDC 985410 and CCDC 985411 contains the supplementary crystallographic data for[(impy)Cd(μ-Br)Br]2and[(impy)ZnCl2], respectively. These data can be obtained free of chargeviahttp://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:deposit@ccdc.cam.ac.uk.
References
Chen Z. F. , Tang Y. Z. , Liang H. , Fun H. K. , Yu K. B. 2006 J. Coord. Chem. 59 207 -    DOI : 10.1080/00958970500270893
Govindaswamy P. , Mozharivskyj Y. A. , Rao Kollipara M. 2005 Polyhedron 24 1710 -    DOI : 10.1016/j.poly.2005.04.034
Wang W. , Spingler B. , Alberto R. 2003 Inorg. Chim. Acta 355 386 -    DOI : 10.1016/j.ica.2003.08.001
Massa W. , Dehghanpour S. , Jahani K. 2009 Inorg. Chim. Acta 362 2872 -    DOI : 10.1016/j.ica.2009.01.008
Herrick R. S. , Houde K. L. , McDowell J. S. , Kiczek L. P. , Bonavia G. 1999 Organomet. Chem. 589 29 -    DOI : 10.1016/S0022-328X(99)00298-3
Schulz M. , Klopfleisch M. , Gorls H. , Kahnes M. , Westerhausen M. 2009 Inorg. Chim. Acta 362 4706 -    DOI : 10.1016/j.ica.2009.06.044
Shakhatreh S. , Mohanraj J. , Czapik A. , Tzimopoulos D. , Kotoulas S. , Gdaniec M. , Akrivos P. D. 2011 J. Mol. Struct. 1002 51 -    DOI : 10.1016/j.molstruc.2011.06.044
Alvarez C. M. , García-Rodríguez R. , Miguel D. 2007 Organomet. Chem. 692 5717 -    DOI : 10.1016/j.jorganchem.2007.09.025
Gonsalvi L. , Gaunt J. A. , Adams H. , Castro A. , Sunley G. J. , Haynes A. 2003 Organometallics 22 1047 -    DOI : 10.1021/om020777w
Buffin B. P. , Squattrito P. J. , Ojewole A. O. 2004 Inorg. Chem. Commun. 7 14 -    DOI : 10.1016/j.inoche.2003.09.015
Vlček A. 2002 Coord. Chem. Rev. 230 225 -    DOI : 10.1016/S0010-8545(02)00047-4
Che C.-M. , Huang J.-S. 2003 Coordin. Chem. Rev. 242 97 -    DOI : 10.1016/S0010-8545(03)00065-1
Schoumacker S. , Hamelin O. , Pécaut J. , Fontecave M. 2003 Inorg. Chem. 42 8110 -    DOI : 10.1021/ic0346533
Chavan S. S. , Sawant S. K. , Sawant V. A. , Lahiri G. K. 2010 Inorg. Chim. Acta 363 3359 -    DOI : 10.1016/j.ica.2010.06.023
Kanas D. A. , Geier S. J. , Vogels C. M. , Decken A. , Westcott S. A. 2008 Inorg. Chem. 47 8727 -    DOI : 10.1021/ic800703n
Carmona D. , Vega C. , Lahoz F. J. , Elipe S. , Oro L. A. , Lamata M. P. , Viguri F. , García-Correas R. , Cativiela C. , de Víu M. P. L.-R. 1999 Organometallics 18 3364 -    DOI : 10.1021/om9810448
Qiu C.-J. , Zhang Y.-C. , Gao Y. , Zhao J.-Q. 2009 J. Organomet. Chem. 694 3418 -    DOI : 10.1016/j.jorganchem.2009.06.034
Nienkemper K. , Kotov V. V. , Kehr G. , Erker G. , Fröhlich R. 2006 Eur. J. Inorg. Chem. 366 -
Datta P. , Sarkar S. K. , Mondal T. K. , Patra A. K. , Sinha C. 2009 J. Organomet. Chem. 694 4124 -    DOI : 10.1016/j.jorganchem.2009.09.017
Roy S. , Mondal T. K. , Mitra P. , Torres E. L. , Sinha C. 2011 Polyhedron 30 913 -    DOI : 10.1016/j.poly.2010.12.037
Schnödt J. , Manzur J. , García A.-M. , Hartenbach I. , Su C.-Y. , Fiedler J. , Kaim W. 2011 Eur. J. Inorg. Chem. 1436 -
Braymer J. J. , Choi J.-S. , DeToma A. S. , Wang C. , Nam K. , Kampf J. W. , Ramamoorthy A. , Lim M. H. 2011 Inorg. Chem. 50 10724 -    DOI : 10.1021/ic2012205
Álvarez C. M. , García-Rodríguez R. , Miguel D. 2012 Inorg. Chem. 51 2984 -    DOI : 10.1021/ic2022984
Zhang J. , Li W. , Bu W. , Wu L. , Ye L. , Yang G. 2005 Inorg. Chim. Acta 358 964 -    DOI : 10.1016/j.ica.2004.11.039
Bose D. , Banerjee J. , Rahaman S. H. , Mostafa G. , Fun H.-K. , Walsh R. D. B. , Zaworotko M. J. , Ghosh B. K. 2004 Polyhedron 23 2045 -    DOI : 10.1016/j.poly.2004.04.035
García-Tojala J. , Rojo T. 1999 Polyhedron 18 1123 -    DOI : 10.1016/S0277-5387(98)00402-1
Gao E.-Q. , Yue Y.-F. , Bai S.-Q. , He Z. , Yan C.-H. 2005 Cryst. Growth Des 5 1119 -    DOI : 10.1021/cg0496181
Lee H. W. , Sengottuvelan N. , Seo H.-J. , Choi J. S. , Kang S. K. , Kim Y.-I. 2008 Bull. Korean Chem. Soc. 29 1711 -    DOI : 10.5012/bkcs.2008.29.9.1711
Zhang D. , Zhao Z. , Wang P. , Chen X. 2012 Bull. Korean Chem. Soc. 33 1581 -    DOI : 10.5012/bkcs.2012.33.5.1581
Maldanis R. J. , Wood J. S. , Chandrasekaran A. , Rausch M. D. , Chien J. C. W. 2002 . Organomet. Chem 645 158 -    DOI : 10.1016/S0022-328X(01)01340-7
Johnson L. K. , Mecking S. , Brookhart M. 1996 J. Am. Chem. Soc. 118 267 -    DOI : 10.1021/ja953247i
Kettunen M. , Vedder C. , Brintzinger H.-H. , Mutikainen I. , Leskelä M. , Repo T. 2005 Eur. J. Inorg. Chem. 1081 -
Ittel S. D. , Johnson L. K. , Brookhart M. 2000 Chem. Rev. 100 1169 -    DOI : 10.1021/cr9804644
Johnson L. K. , Killian C. M. , Brookhart M. 1995 J. Am. Chem. Soc. 117 6414 -    DOI : 10.1021/ja00128a054
Svejda S. A. , Brookhart M. 1999 Organometallics 18 65 -    DOI : 10.1021/om980736t
Small B. L. , Brookhart M. 1998 J. Am. Chem. Soc. 120 7143 -    DOI : 10.1021/ja981317q
Small B. L. , Brookhart M. 1999 Macromolecules 32 2120 -    DOI : 10.1021/ma981698s
Small B. L. , Brookhart M. , Bennett A. M. A. 1998 J. Am. Chem. Soc. 120 4049 -    DOI : 10.1021/ja9802100
Vedder C. , Schaper F. , Brintzinger H.-H. , Kettunen M. , Babik S. , Fink G. 2005 Eur. J. Inorg. Chem. 1071 -    DOI : 10.1002/ejic.200400912
Tellmann K. P. , Gibson V. C. , White A. J. P. , Williams D. J. 2005 Organometallics 24 280 -    DOI : 10.1021/om049297q
Britovsek G. J. P. , Bruce M. , Gibson V. C. , Kimberley B. S. , Maddox P. J. , Mastroianni S. , McTavish S. J. , Redshaw C. , Solan G. A. , Stromberg S. , White A. J. P. , Williams D. J. 1999 J. Am. Chem. Soc. 121 8728 -    DOI : 10.1021/ja990449w
Britovsek G. J. P. , Gibson V. C. , Kimberley B. S. , Maddox P. J. , McTavish S. J. , Solan G. A. , White A. J. P. , Williams D. J. 1998 Chem. Commun. 849 -
Bianchini C. , Mantovani G. , Meli A. , Migliacci F. , Laschi F. 2003 Organometallics 22 2545 -    DOI : 10.1021/om030227d
Gibson V. C. , O’Reilly R. K. , Wass D. F. , White A. J. P. , Williams D. J. 2003 Dalton Trans. 2824 -    DOI : 10.1039/b303094f
He X. , Yao Y. , Luo X. , Zhang J. , Liu Y. , Zhang L. , Wu Q. 2003 Organometallics 22 4952 -    DOI : 10.1021/om030292n
Bahuleyan B. K. , Chandran D. , Kwak C. H. , Ha C.-S. , Kim I. 2008 Macromol. Res. 18 745 -
Lian B. , Thomas C. M. , Casagrande, O. L. Jr. , Lehmann C. W. , Roisnel T. , Carpentier J.-F. 2007 Inorg. Chem. 46 328 -    DOI : 10.1021/ic061749z
Li J. , Song H. , Cui C. 2010 Appl. Organometal. Chem. 24 82 -
Wang W. , Stenson P. A. , Marin-Becerra A. , McMaster J. , Schroder M. , Irvine D. J. , Freeman D. , Howdle S. M. 2004 Macromolecules 37 6667 -    DOI : 10.1021/ma049267z
Yang M. , Park W. J. , Yoon K. B. , Jeong J. H. , Lee H. 2011 Inorg. Chem. Commun. 14 189 -    DOI : 10.1016/j.inoche.2010.10.019
Zhang Z. , Cui D. , Trifonov A. A. 2010 Eur. J. Inorg. Chem. 2861 -
Lansalot-Matras C. , Bonnette F. , Mignard E. , Lavastre O. 2008 J. Organomet. Chem. 693 393 -    DOI : 10.1016/j.jorganchem.2007.11.010
Kim E. , Woo H. Y. , Kim S. , Lee H. , Kim D. , Lee H. 2012 Polyhedron 42 135 -    DOI : 10.1016/j.poly.2012.05.014
Kim S. , Kim E. , Lee H.-J. , Lee H. 2014 Polyhedron 69 149 -    DOI : 10.1016/j.poly.2013.11.036
Dominey R. N. , Hauser B. , Hubbard J. , Dunham J. 1991 Inorg. Chem. 30 4754 -    DOI : 10.1021/ic00025a014
2000 SMART and SAINT-Plus v 6.22 Bruker AXS Inc. Madison: Wisconsin, USA
Sheldrick G. M. 2002 SADABS v 2.03 University of Göttingen Germany
2000 SHELXTL v 6.10 Bruker AXS, Inc. Madison: Wisconsin, USA
Kitaura T. , Kitayama T. 2007 Macromol. Rapid Commun 28 1889 -    DOI : 10.1002/marc.200700259