Advanced
Simple Crystal Phase Control of TiO<sub>2</sub> Nanoparticles via Pulsed Laser Ablation in Nitric Acid
Simple Crystal Phase Control of TiO2 Nanoparticles via Pulsed Laser Ablation in Nitric Acid
Bulletin of the Korean Chemical Society. 2013. Dec, 34(12): 3909-3911
Copyright © 2013, Korea Chemical Society
  • Received : September 06, 2013
  • Accepted : September 25, 2013
  • Published : December 20, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Seong Min Hong
Seulki Lee
Hyeon Jin Jung
Yiseul Yu
Myong Yong Choi

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
The experimental setup for the generation of metal nanoparticles via PLAL is described in detail elsewhere. 10 Briefly, the Ti (99.999%, Sigma-Aldrich) plate was fixed in a Pyrex vial filled with de-ionized (DI) water (10 mL) and the HNO 3 solution under a nitrogen purge continuously stirred by a magnetic bar. A pulsed Nd:YAG laser (1064 nm, 10 Hz, 7 ns) was focused onto the surface of the Ti plate with a spot size of about 1 mm diameter using a lens with a focal length of 25 mm. Laser ablation was continued for 30 min with a laser pulse energy of 80 mJ/pulse. The HNO 3 solutions used for PLAL were prepared at concentrations of 10 −3 , 1, 3, 6, and 10 M. The ablated solutions were washed several times with DI water using a centrifugation rate of 13000 rpm for 10 min to remove HNO 3 . The resulting sediments were collected and then individually sonicated after addition of DI water and centrifugation. This washing procedure was repeated several times. Each experiment was repeated at least 10 times and the sediments were collected and dried on a silicon substrate at room temperature. The morphology and structure of the nanoparticles produced by PLAL were investigated with a field emission scanning electron microscope [FE-SEM, XL30 S FEG, Philips (15 kV)] and transmission electron microscope [TEM, JEOL, JEM-2-10 (200 kV)]. X-ray diffraction (XRD) patterns of the nanoparticles were obtained with a Bruker AXS D8 DISCOVER with GADDS diffractometer using Cu Kα (0.1542 nm) radiation with a Bragg angle ranging from 10 to 90°.
Acknowledgements
This work was supported by the Korea Ministry of Environment as “GAIA Project” (2012000550026).
References
Chen X. , Mao S. S. 2007 Chem. Rev. 107 2891 -    DOI : 10.1021/cr0500535
Matijeviæ E. , Budnik M. , Meites L. 1977 J. Colloid Interface Sci. 61 302 -    DOI : 10.1016/0021-9797(77)90393-9
Kominami H. , Takada Y. , Yamagiwa H. , Kera Y. , Inoue M. , Inui T. 1996 J. Mater. Sci. Lett. 15 197 -    DOI : 10.1007/BF00274449
Shi L. , Li C. , Chen A. , Zhu Y. , Fang D. 2000 Mater. Chem. Phys. 66 51 -    DOI : 10.1016/S0254-0584(00)00277-7
Sakai H. , Kawahara H. , Shimazaki M. , Abe M. 1998 Langmuir 14 2208 -    DOI : 10.1021/la970952r
Wu M. , Long J. , Huang A. , Luo Y. , Feng S. , Xu R. 1999 Langmuir 15 8822 -    DOI : 10.1021/la990514f
Chen J. , Gao L. , Huang J. , Yan D. 1996 J. Mater. Sci. 31 3497 -
Kudo A. , Miseki Y. 2009 Chem. Soc. Rev. 38 253 -    DOI : 10.1039/b800489g
Patil P. P. , Phase D. M. , Kulkarni S. A. , Ghaisas S. V. , Kulkarni S. K. , Kanetkar S. M. , Ogale S. B. , Bhide V. G. 1987 Phys. Rev. Lett. 58 238 -    DOI : 10.1103/PhysRevLett.58.238
Mafuné F. , Kohno J.-y. , Takeda Y. , Kondow T. , Sawabe H. 2000 J. Phys. Chem. B 104 9111 -    DOI : 10.1021/jp001336y
Hong S. M. , Lee S. , Jung H. J. , Yu Y. , Shin J. H. , Kwon K.-Y. , Choi M. Y. 2013 Bull. Korean Chem. Soc. 34 279 -    DOI : 10.5012/bkcs.2013.34.1.279
Liu P. , Cai W. , Fang M. , Li Z. , Zeng H. , Hu J. , Luo X. , Jing W. 2009 Nanotechnology 20 285707 -    DOI : 10.1088/0957-4484/20/28/285707
Lee S. , Ahn A. , Choi M. Y. 2012 Phys. Chem. Chem. Phys. 14 15677 -    DOI : 10.1039/c2cp42463k
Iwabuchi A. , Choo C.-K. , Tanaka K. 2004 J. Phys. Chem. B 108 10863 -    DOI : 10.1021/jp049200d
Sugimoto T. , Zhou X. , Muramatsu A. 2003 J. Colloid Interface Sci. 259 43 -    DOI : 10.1016/S0021-9797(03)00036-5