Advanced
Two New Isoflavone Glycosides from the Extracts of the Fungus Monascus pilosus-Fermented Black Soybean
Two New Isoflavone Glycosides from the Extracts of the Fungus Monascus pilosus-Fermented Black Soybean
Bulletin of the Korean Chemical Society. 2013. Dec, 34(12): 3863-3866
Copyright © 2013, Korea Chemical Society
  • Received : August 26, 2013
  • Accepted : September 12, 2013
  • Published : December 20, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Seong Su Hong
Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion Suwon 443-270, Korea
Yun-Hyeok Choi
Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion Suwon 443-270, Korea
Jung A Lee
Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion Suwon 443-270, Korea
Eun-Kyung Ahn
Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion Suwon 443-270, Korea
Joo-Won Suh
Division Bioscience and Bioinformatics, College of Natural Science, Myongji University, Yongin 449-728, Korea
Joa Sub Oh
College of Pharmacy, Dankook University, Cheonan 330-714, Korea

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental Section
General Procedures. Optical rotations were recorded on a Jasco P-200 digital polarimeter. UV and IR spectra were obtained using a Shimadzu UV-1650PC and a Jasco FT/IR- 4100 spectrometer, respectively. 1D and 2D NMR spectra were measured on a Bruker Ascend 700 MHz NMR spectrometer with tetramethylsilane as an internal standard, and chemical shifts expressed in terms of δ values. Electrospray ionization (ESI) mass spectra were obtained on a LTQ Orbitrap XL (Thermo Scientific) mass spectrometer. Preparative HPLC was performed using a Shimadzu system (LC-8A pump and SPD-20A UV/VIS detector) and a YMC-Pack ODS A column (250 × 20 mm i.d.), using a mixed solvent system of methanol-water at a flow rate of 8 mL/min. Medium pressure liquid chromatography (MPLC, Combi Flash RF, Teledyne ISCO) separations were performed using a RediSep Rf silica column (40 g) with a flow rate of 40 mL/min. Open column chromatography was performed using a silica gel (Kieselgel 60, 70-230 mesh, Merck) and Diaion HP-20 (Mitsubishi Kasei, Tokyo); and thin layer chromatography (TLC) was performed using a pre-coated silica gel 60 F 254 (0.25 mm, Merck) and RP-18 F 254 S (0.25 mm, Merck Co., Darmstadt). All other chemicals and reagents were analytical grade.
Extraction and Isolation. The dried RMBS (10 Kg) were extracted with 80% EtOH (3 × 18 L) at room temperature. After filtration and evaporation of the solvent in vacuo , the EtOH extract was suspended in distilled water and then partitioned, in turn, with n -Hexane, CH 2 Cl 2 , EtOAc and n - BuOH. The EtOAc-soluble fraction (23 g), which showed the most potent activity, was subjected to further chromatographic separation. The EtOAc-soluble fraction was subjected to Diaion HP-20 column chromatography with the mixture of methanol/water (0%, 20%, 40%, 60%, 80%, 100% MeOH in water) to give six fractions (G44-56-31 ~ 36). G44-56-35 was subjected to MPLC on silica gel eluting with the mixture of CHCl 3 /MeOH (1:0 → 0:1, RediSep Rf silica column, 40 g, flow rate 40 mL/min) to give 11 subfractions (G44-92-1 ~ 11). Subfraction G44-92-7 was further purified by means of semi-preparative HPLC eluting with acetonitrile/water (30 to 50% acetonitrile) at a flow speed of 8 mL/min to yield compounds 1 (8 mg), 2 (12 mg), 3 (25 mg) and 4 (120 mg).
Acid Hydrolysis of Compound 2 and Determination of Stereochemistry of Ribofuranose. A solution of compound 2 (5 mg) in 9% aq. HCl (1 mL) was reacted for 2 h at 80 ℃. The reaction mixture was extracted with EtOAc repeatedly to remove the aglycone fraction, which was identical to genistein. The H 2 O layer was then concentrated to furnish the sugar residue (1.1 mg). The rotation recorded for the ribose isolated in this study was
PPT Slide
Lager Image
-25.3° ( c 0.03, H 2 O), which closely matched that for the D-ribose (ref. -18.5°).
6''-O-Crotonylgenistin (1). White amorphous powder;
PPT Slide
Lager Image
-76.9° ( c 0.1, MeOH); IR λ max 3516, 3455, 2918, 2853, 1709, 1656, 1511, 1442, 1370, 1239, 1182, 1073 cm -1 ; UV (MeOH) λ max nm (log ε): 260 (4.05), 329 (3.25); 1 H (700 MHz) and 13 C (175 MHz) NMR spectroscopic data, see Table 1 ; ESI-MS (negative mode) m/z 499 [M-H] - , 545 [M+COOH] - , 999 [2M-H] - , 1045 [2M+COOH] - ; HRESIMS (negative mode) m/z 499.1233 (calcd for C 25 H 23 O 11 , 499.1235).
Genistein-7-O-α-D-ribofuranoside (2) . White amorphous powder;
PPT Slide
Lager Image
+78.8° ( c 0.2, MeOH); IR λ max 3366, 2931, 2353, 1651, 1612, 1445, 1368, 1244, 1039 cm -1 ; UV (MeOH) λ max nm (log ε): 260 (4.11), 331 (3.52); 1 H (700 MHz, CD 3 OD) and 13 C (175 MHz, CD 3 OD) NMR spectroscopic data, see Table 1 ; 1 H NMR (700 MHz, DMSO- d 6 ) and 13 C (175 MHz, DMSO- d 6 ) NMR spectroscopic data, see Supporting Information; ESI-MS (negative mode) m/z 269 [M–ribose] - , 401 [M-H] - , 447 [M+COOH] - ; HRESIMS (negative mode) m/z 401.0868 (calcd for C 20 H 17 O 9 , 401.0867).
Acknowledgements
Supporting Information.Experimental details (fermentation, assay procedures, and acid hydrolysis of 1), NMR and HRESI-MS spectra of1and2, and NMR data for2-4are available as Supporting Information.
References
Dikshit R. , Tallapragada R. 2011 J. Microbiol. Biotech. Res. 1 164 -
Chayawat J. , Jareonkitmongkol S. , Songsasen A. , Yongsmith B. 2009 Kasetsart. J. (Nat. Sci.) 43 696 -
Lee C. L. , Wen J. Y. , Hsu Y. W. , Pan T. M. 2013 J. Agric. Food Chem. 61 1493 -    DOI : 10.1021/jf304015z
Chuang C. Y. , Shi Y. C. , You H. P. , Lo Y. H. , Pan T. M. 2011 J. Agric. Food Chem. 59 3027 -    DOI : 10.1021/jf104239m
Wu M. D. , Cheng M. J. , Yech Y. J. , Chen Y. L. , Chen K. P. , Chen I. S. , Yang P. H. , Yuan G. F. 2011 Molecules 16 4719 -    DOI : 10.3390/molecules16064719
Ho B. Y. , Pan T. M. 2009 J. Agric. Food Chem. 57 8258 -    DOI : 10.1021/jf901619w
Hsu W. H. , Pan T. M. 2012 Appl. Microbiol. Biotechnol. 93 1831 -    DOI : 10.1007/s00253-012-3891-9
Akihisa T. , Tokuda H. , Ukiya M. , Kiyota A. , Yasukawa K. , Sakamoto N. , Kimura Y. , Suzuki T. , Takayasu J. , Nishino H. 2005 Chem. Biodivers 2 1305 -    DOI : 10.1002/cbdv.200590101
Kono I. , Himeno K. 1999 Biosci. Biotechnol. Biochem. 63 1494 -    DOI : 10.1271/bbb.63.1494
Lee S. I. , Kim S. D. , Lee Y. K. , Kim M. J. , Lee I. A. , Choi J. , Suh J. W. 2013 Korean J. Nutr. 46 5 -    DOI : 10.4163/kjn.2013.46.1.5
Kopelman P. G. 2000 Nature 404 635 -
Cao Y. 2009 J. Clin. Invest. 117 2362 -
Jo J. , Gavrilova O. , Pack S. , Jou W. , Mullen S. , Sumner A. E. , Cushman S. W. , Periwal V. 2009 PLoS Comput. Biol. 5 e1000324 -    DOI : 10.1371/journal.pcbi.1000324
Kanda K. , Nishi K. , Kadota A. , Nishimoto S. , Liu M. C. , Sugahara T. 2011 Biochim. Biophys. Acta 1820 461 -
Ejaz A. , Wu D. , Kwan P. , Meydani M. 2009 J. Nutr. 139 919 -    DOI : 10.3945/jn.108.100966
Madsen L. , Petersen R. K. , Sørensen M. B. , Jørgensen C. , Hallenborg P. , Pridal L. , Fleckner J. , Amri E. Z. , Krieg P. , Furstenberger G. , Berge R. K. , Kristiansen K. 2003 Biochem. J. 375 539 -    DOI : 10.1042/BJ20030503
Park S. H. , Huh T. L. , Kim S. Y. , Oh M. R. , Pichiah P. B. T. , Chae S. W. , Cha Y. S. 2013 Obesity
Karmase A. , Birari R. , Bhutani K. K. 2013 Phytomedicine 20 805 -    DOI : 10.1016/j.phymed.2013.03.014
Alvala R. , Alvala M. , Sama V. , Dharmarajan S. , Variam Ullas J. 2013 J. Ethnopharmacol. 148 441 -    DOI : 10.1016/j.jep.2013.04.033
Lee S. E. , Lee E. H. , Lee T. J. , Kim S. W. , Kim B. H. 2013 Biosci. Biotechnol. Biochem. 77 544 -
Lee M. , Song J. Y. , Chin Y. W. , Sung S. H. 2013 Bioorg. Med. Chem. Lett. 23 2069 -    DOI : 10.1016/j.bmcl.2013.01.127
Lee I. , Seo J. , Kim J. , Kim H. , Youn U. , Lee J. , Jung H. , Na M. , Hattori M. , Min B. , Bae K. 2010 J. Nat. Prod. 73 172 -    DOI : 10.1021/np900578h
Chen Y. Y. , Lee M. H. , Hsu C. C. , Wei C. L. , Tsai Y. C. 2012 J. Agric. Food Chem. 60 955 -    DOI : 10.1021/jf203981x
Fujimori K. , Shibano M. 2013 J. Agric. Food Chem. 61 5139 -    DOI : 10.1021/jf401154c
Chen S. G. , Chen J. J. , Gao K. 2007 Chem. Pharm. Bull. 55 1181 -    DOI : 10.1248/cpb.55.1181
Liu T. , Chen G. , Yi G. Q. , Xu J. K. , Zhang T. L. , Hua H. M. , Pei Y. H. 2010 J. Asian Nat. Prod. Res. 12 209 -    DOI : 10.1080/10286020903535419
Fedoreyev S. A. , Bulgakov V. P. , Grishchenko O. V. , Veselova M. V. , Krivoschekova O. E. , Kulesh N. I. , Denisenko V. A. , Tchernoded G. K. , Zhuravlev Y. N. 2008 J. Agric. Food Chem. 56 7023 -    DOI : 10.1021/jf801227q
Jang M. Y. , Cho J. Y. , Cho J. I. , Moon J. H. , Park K. H. 2006 Food Sci. Biotechnol. 15 214 -
Cuyckens F. , Shahat A. A. , Pieters L. , Claeys M. 2002 J. Mass Spectrom. 37 1272 -    DOI : 10.1002/jms.402
Du L. , Zhu T. , Liu H. , Fang Y. , Zhu W. , Gu Q. 2008 J. Nat. Prod. 71 1837 -    DOI : 10.1021/np800303t
Li Y. , Li X. , Lee U. , Kang J. S. , Choi H. D. , Sona B. W. 2006 Chem. Pharm. Bull. 54 882 -    DOI : 10.1248/cpb.54.882
Igarashi T. , Satake M. , Yasumoto T. 1999 J. Am. Chem. Soc. 121 8499 -    DOI : 10.1021/ja991740e
Serianni A. S. , Barker R. 1984 J. Org. Chem. 49 3292 -    DOI : 10.1021/jo00192a009
Farmakalidis E. , Murphy P. A. 1985 J. Agric. Food Chem. 33 385 -    DOI : 10.1021/jf00063a016
Ohta N. , Kuwata G. , Akahori H. , Watanabe T. 1980 Agric. Biol. Chem. 44 469 -    DOI : 10.1271/bbb1961.44.469
Ahn E. K. , Oh J. S. 2012 J. Korean Soc. Appl. Biol. Chem. 55 63 -    DOI : 10.1007/s13765-012-0011-6