Advanced
Control of the Shell Thickness of TiO<sub>2</sub>@SiO<sub>2</sub> Particles and Its Surface Functionalization
Control of the Shell Thickness of TiO2@SiO2 Particles and Its Surface Functionalization
Bulletin of the Korean Chemical Society. 2013. Nov, 34(11): 3456-3458
Copyright © 2013, Korea Chemical Society
  • Received : June 05, 2013
  • Accepted : August 02, 2013
  • Published : November 20, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Junho Ahn
Sung Ho Jung
Ji Ha Lee
Ki-Young Kwon
Jong Hwa Jung

Abstract
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Experimental
Preparation of TiO2 Particles. 29 Two solutions were prepared: 0.45 wt %of titanium butoxide in ethylene glycol and 2.03 mM of surfactant (Tween 20) in acetone containing a small amount of water. The titanium butoxide solution was mixed with the Tween 20 solution. After stirring for 1 day at room temperature, solution was centrifuged for 10 min at 3000 rpm.
Preparation of TiO2@SiO2 Particles. 29 TiO 2 particles (0.082 g) were dried for 2 h at 323 K. The particles were dispersed in 100 mL of ethanol under the sonication and then 5 mL of aqueous ammonia solution was added to the dispersion. Tetraethyl orthosilicate (TEOS) (2 mL) was added to the dispersion. After stirring for 10-40 min at room temperature, the solvent was removed by centrifugation at 3000 rpm for 5 min. The resulting powder was calcinated at 873-1273 K for 15 minutes.
Preparation of Acryl Functionalized TiO2@SiO2 Particles. TiO 2 @SiO 2 particles were dispersed in a solution of 1.5 mL of ethanol, 1.7 mL of water and 1.25 mL of aqueous ammonia solution under sonication for 10 min. 3-(Trimethoxysilyl)- propyl acrylate (0.1 mL) was added to the solution. The solution was stirred for 1 day and the particles were collected by centrifugation at 3000 rpm for 10 min. The resulting particles were washed with ethanol and dried in vacuum.
Acknowledgements
Supporting Information.FT-IR spectra, TEM images, and BET data of TiO2@SiO2particles.
References
Pekarek K. J. , Jacob J. S. , Mathiowitz E. 1994 Nature 367 258 -    DOI : 10.1038/367258a0
Lou X. W. , Archer L. A. , Yang Z. 2008 Adv. Mater 20 3987 -    DOI : 10.1002/adma.200800854
Huang C. , Huang W. , Yeh C. 2011 Biomaterials 32 556 -    DOI : 10.1016/j.biomaterials.2010.08.114
Lu Y. , Fan H. , Stump A. , Ward T. L. , Rieker T. , Brinker C. J. 1999 Nature 398 223 -    DOI : 10.1038/18410
Schacht S. , Huo Q. , Voigt-Martin I. G. , Stucky G. D. , Schuth F. 1996 Science 273 768 -    DOI : 10.1126/science.273.5276.768
Discher B. M. , Won Y. Y. D. S. , Ege J. , Lee C. M. , Bates F. S. , Discher D. E. , Hammer D. A. 1999 Science 284 1143 -    DOI : 10.1126/science.284.5417.1143
Caruso F. , Caruso R. A. , Möhwald H. 1998 Science 282 1111 -    DOI : 10.1126/science.282.5391.1111
Zhong Z. , Yin Y. , Gates B. , Xia Y. 2000 Adv. Mater. 12 206 -    DOI : 10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
Wu D. , Ge X. , Zhang Z. , Wang M. , Zhang S. 2004 Langmuir 20 5192 -    DOI : 10.1021/la049405d
Joo J. B. , Zhang Q. , Lee I. , Dahl M. , Zaera F. , Yin Y. 2012 Adv. Funct. Mater. 22 166 -    DOI : 10.1002/adfm.201101927
Zhang T. , Ge J. , Hu Y. , Zhang Q. , Aloni S. , Yin Y. 2008 Angew. Chem. Int. Ed. 47 5806 -    DOI : 10.1002/anie.200800927
Chaudhuri R. G. , Paria S. 2012 Chem. Rev. 112 2373 -    DOI : 10.1021/cr100449n
Wu X. , Xu D. 2010 Adv. Mater. 22 1516 -    DOI : 10.1002/adma.200903879
Wu X. , Xu D. 2009 J. Am. Chem. Soc. 131 2774 -    DOI : 10.1021/ja808452r
Wong Y. J. , Zhu L. , Teo W. S. , Tan Y. W. , Yang Y. , Wang C. , Chen H. 2011 J. Am. Chem. Soc. 133 11422 -    DOI : 10.1021/ja203316q
Li L. , Tang F. , Liu H. , Liu T. , Hao N. , Chen D. , Teng X. , He J. 2010 ACS. Nano. 4 6874 -    DOI : 10.1021/nn100918a
Lee J. , Park J. C. , Song H. 2008 Adv. Mater. 20 1523 -    DOI : 10.1002/adma.200702338
Liu J. , Qiao S. Z. , Hartono S. B. , Lu G. Q. 2010 Angew. Che. Int. Ed. 49 4981 -    DOI : 10.1002/anie.201001252
Liu J. , Qiao S. Z. , Chen J. S. , Lou X. W. , Xing X. , Lu G. Q. 2011 Chem. Commun. 47 12578 -    DOI : 10.1039/c1cc13658e
Ikeda S. , Ikoma Y. , Kobayashi H. , Harada T. , Torimoto T. , Ohtani B. , Matsumura M. 2007 Chem. Commun. 36 3753 -
Liu J. , Xu J. , Che R. , Chen H. , Liu M. , Liu Z. 2013 Chem. Eur. J. 19 6746 -    DOI : 10.1002/chem.201203557
Fang Q. , Xuan S. , Jiang W. , Gong X. 2011 Adv. Funct. Mater. 21 1902 -    DOI : 10.1002/adfm.201002191
Wang Y. , Wang F. , Chen B. , Xu H. , Shi D. 2011 Chem. Commun. 47 10350 -    DOI : 10.1039/c1cc13463a
Williams D. D. B. , Carter C. B. 1996 Transmission Electron Microscopy Springer
Murashkevich A. N. , Lavitskaya A. S. , Barannikova T. L. , Zharskii I. M. 2008 J. Appl. Spectrosc. 75 730 -    DOI : 10.1007/s10812-008-9097-3
Lee C. G. , Ahn A. , Lee S. J. , Lee J. , Choi M. Y. , Jung J. H. 2011 J. Nanosci. Nanotecnol. 11 3696 -    DOI : 10.1166/jnn.2011.3605
Linsebigler A. L. , Lu G. , Yates J. T. 1995 Chem. Rev. 95 735 -    DOI : 10.1021/cr00035a013
Demirörs A. F. , Blaaderen A. V. , Imhof A. 2009 Chem. Mater. 21 979 -    DOI : 10.1021/cm803250w
Stöber W. , Fink A. , Bohn E. 1968 J. Colloid Interface Sci. 26 62 -    DOI : 10.1016/0021-9797(68)90272-5