Advanced
Experimental Outdoor Visible Light Data Communication Systems with Optical Filter
Experimental Outdoor Visible Light Data Communication Systems with Optical Filter
Journal of the Korea Institute of Information and Communication Engineering. 2014. Aug, 18(8): 1840-1846
Copyright © 2014, The Korea Institute of Information and Commucation Engineering
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/li-censes/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : May 10, 2014
  • Accepted : June 16, 2014
  • Published : August 31, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
용현 김
Department of Information and Communications Engineering, Pukyong University, Busan 608-737, Korea
연호 정
Department of Information and Communications Engineering, Pukyong University, Busan 608-737, Korea

Abstract
An experimental outdoor optical wireless data communication system with an optical filter in the presence of sunlight or artificial light is presented. For the efficient blocking of light noise outdoors, we employ an optical filter made of microlouver film on the top of the photo diode. This filter is designed to block any light noise incident from an angle higher than 30˚ on the assumption that light noise does not face the photo diode horizontally. Outdoor experiments daytime with the optical filtering have been conducted. The experimental results demonstrate that the optical filter effectively blocks nearly all light noise incident from the specified angle or higher and more than 90% of the transmitted data packets are successfully received. The proposed outdoor visible light data communication can thus facilitate a practical free space outdoor optical wireless data transmission.
Keywords
Ⅰ. Introduction
Visible light communications (VLC) use LEDs to transmit data using intensity modulation (IM) techniques. The intensity level detected at the receiver is converted into an electrical signal, thus being termed as direct detection (DD). These IM/DD methods are popular in VLC because they are relatively simple and also easy to implement. Visible light communication (VLC) is favorably considered in many applications, such as high-speed wireless data communications, intelligent transportation systems, etc. [1 , 2] . The VLC systems can also be found attractive in many outdoor applications, such as vehicle safety functions and WPANs. However, for the outdoor applications, the VLC suffers from strong influence of ambient light noise. The majority of existing studies related to VLC has been focused on indoor environments [3] . A few reports have attempted to address the outdoor applications. Recently, Lourenco et al. [4] have demonstrated that the outdoor VLC in the presence of significant optical noise levels can be achieved using direct sequence spread spectrum. Lee et al. [5] have proposed an analytical model in the presence of daylight together with the selective combining technique.
Daylight is essentially an unmodulated source with average power much larger than the desired signal. Therefore, the effect of these ambient noise lights is so significant that the performance of outdoor optical wireless data communication systems can be highly susceptible. In view of this adverse effect from ambient-light noise, an outdoor optical wireless data communication needs to be investigated, while efficiently blocking or reducing the noise light for outdoor VLC data transmission.
This paper experimentally investigates an outdoor optical wireless communication system with an efficient optical filter in the presence of sunlight or any other artificial light.
In Section II, we describe the outdoor VLC system with optical filters. The experimental results from the proposed system are followed in Section III. Conclusions have been drawn in Section IV.
Ⅱ. Outdoor VLC System with Optical Filters
- 2.1. Measurements of Light Intensity
For visible light communications, we note that there exist various light noises as seen in Fig. 1 .
PPT Slide
Lager Image
광원 스펙트럼 Fig. 1 Spectra of various light sources
In order to evaluate the effect of ambient light noises, we first conducted a measurement of light intensity in various indoor/outdoor environments.
For easiness of light intensity measurement, we have developed an Android application on Jellybean 4.1.2 platform using Google Android SDK [6] . This application converts the light intensity measured through the light sensor into corresponding values in lux. Using this application, we have performed an experiment to measure the light intensity in indoor, outdoor-shaded, outdoor-obliquely incident (10° ≤ θ ≤ 30°) sunlight and outdoor-directly incident sunlight. 2 shows the light intensities of these four conditions. It can be seen that even when measured in the shaded outdoor environment, the intensity is approximately 9 times higher than in indoor environments. On the other hand, when measured outdoors, the signal becomes saturated, therefore being unable to detect the signals. That is, it is impossible to convey any symbols over VLC in an outdoor environment, unless specific compensation or avoidance methods are employed.
PPT Slide
Lager Image
광세기 비교: (a)실내 (b)실외-그늘 (c)실외-태양광 입 사 (10°≤θ≤30°) (d)실외-태양광 (직접 입사) Fig. 2 Light intensity comparison: (a) indoor (b)outdoorshaded (c) outdoor-obliquely(10°≤θ≤30°) incident sunlight (d) outdoor-direct sunlight
Following the analysis of the effect of light noise and the assumption that the VLC link does not establish on direct sunlight, we design the outdoor VLC data system to block obliquely incident lights via optical filtering. Furthermore, we aim to achieve similar intensities to indoor or outdoor-shaded by applying an optical filter. That is, the optical filter is designed to block unwanted light noise so that a desirable outdoor VLC environment would be made as if it were in indoor or outdoor-shaded environments. Fig. 3 illustrates the main principle of the optical filtering in outdoor environments.
PPT Slide
Lager Image
비스듬한 입사 태양광 차단을 위한 제안 광필터링 Fig. 3 Proposed filtering method against obliquely incident sunlight
- 2.2. Outdoor VLC with Optical Filters
For an efficient VLC data communication system, we first design an optical filter to block any artificial light or light noise for a VLC link outdoors. To this end, we have designed a light sensor module for receiving the LED light and subsequent data analysis. This module obviously includes a photo diode and consists of collimate lens on the top of the photo diode for the purpose of focusing incident light onto the photo diode. The optical filter is laid on this lens for blocking unwanted lights.
Within the module, we choose TSL252R as a light sensor. It is known that this light sensor passes up to 80% of input value for any lights incident between 0 and 30° [7] . It also responds well to the wavelength between 700 and 800nm. It is apparent that output voltage is directly proportional to the light intensity (irradiance) on the photodiode. The optical filter we employed is one of light control films that contain a special layer called microlouver [8] . One of the most important advantages of this film is that by varying the thickness and angle of the microlouver, the desired blocking performance can be achieved. For the current experiments, the louver angle is adjusted to 30°.
Fig. 4 shows the blocking effect of the filter in detail. The louver film consists of transparent layer, absorption layer and blocking layer. The film is designed such that the light incident from within the specified angle passes through via the transparent layer, whereas the light beyond that angle is first absorbed and eventually blocked via the absorption and the blocking layers. Therefore, the light incident within the specified angle impinges upon the light sensor.
PPT Slide
Lager Image
광필터의 차단 효과 Fig. 4 Blocking effect of the optical filter
- 2.3. Outdoor Visible Light Data Communication
Following the purposely designed optical filter, we have built an experimental VLC data communication system. Fig.5 shows the experimental system.
PPT Slide
Lager Image
실험적인 가시광 데이터 통신 시스템 Fig. 5 Experimental VLC data communication system
The LED transmitter consists of a microcontroller unit (MCU) called Arduino UNO R3 [9] operating at 16MHz clock speed. A 3W white LED driven by 5V has been employed. It must be noted that this LED is popular for illumination as well as communication. For the convenience and flexibility of data analysis, we have used an Android device with dual-core Exynos based GT-N7000 [10] and the photo diode embedded in the Android device.
As mentioned previously, the experiment was conducted with the optical filter attached in outdoor environments. By varying the distance between the transmitter and receiver, the received data were recorded. The block diagram of the system is shown in Fig. 6 .
PPT Slide
Lager Image
실험 시스템의 블록도 Fig. 6 Block diagram of the experimental system
- 2.3.1. Transmitter Structure
The transmitter is composed of three main parts: data conversion via computer, LED driver and LEDs. When the user data is received, the data is first sent to the controller via serial communications. The controller then converts the data (text) into binary data via ASCII codes. Then, this data is formed as a data frame. To drive a LED, inverse 4PPM modulation has been employed and the 3W Power LED transmits over free space. The collimate lens around the LED make the light focused. Fig.7 shows the block diagram of the transmitter.
PPT Slide
Lager Image
송신기의 기능적 블럭도 Fig. 7 Functional block diagram of the transmitter
The details of the receiver are described below.
- 2.3.2. Receiver Structure
The light transmitted first impinges upon the optical filter that would block unwanted light or other ambient light noise. Then, the light will pass through to the photo diode. The analog-to-digital converter is employed to convert back into the digital data. At this point, demodulation is performed to extract the data frame. The parity bit is evaluated for frame error occurrence. If the frame is in error, that frame is discarded, otherwise the data is extracted. As mentioned earlier, the data extraction is conducted using the Android device. The detailed operation of the receiver is shown in Fig.8 .
PPT Slide
Lager Image
수신기의 기능적 블록도 Fig. 8 Functional block diagram of the receiver
- 2.3.3. Data Frame and Modulation
Data is framed as shown in Fig.9 . The start of the frame is indicated by SOF, whereas EOF is used to signal the end of the frame. These two overhead are 16bits, while the payload occupies 16bits.
PPT Slide
Lager Image
데이터 프레임 구조 Fig. 9 Data frame structure
The SOF of 8bits includes PRE field that is essentially 8bits of alternating “1” and “0” and used to synchronize the data. For the detection of error occurrence, the even parity bit is included in the EOF field. Therefore, the frame size is 32bits.
The modulation for the VLC transmission is the inverse 4PPM scheme. This scheme is shown in Fig.10 . Although the PPM scheme can also be used, the inverse PPM is employed because of the illumination of LEDs. That is, the logic 0 state is regarded as pulse on state and the logic 1 state is pulse off state.
PPT Slide
Lager Image
역 4PPM Fig. 10 Inverse 4PPM
- 2.3.4. Data Frame and Modulation
Fig.11 shows the received data extracted the frame. In other words, by removing the SOF and EOF, the data are recovered and frame error rate (or bit error rate) is computed.
PPT Slide
Lager Image
수신된 데이터 Fig. 11 Received data
Ⅲ. Experimental Results
Prior to the data transmission in the proposed VLC data system, we have first conducted the evaluation of the optical filtering. The experiment was conducted in broad daylight approximately at 2:00 p.m. on the campus. The distance between the transmitter and receiver is approximately 2m. We have compared light intensity before and after the optical filtering. It is shown in Fig.12 that the sunlight has been significantly reduced with the optical filter made of the microlouver film in terms of light intensity. Only 7.2 percentage point of the light was detected with the optical filter. This result verifies the effectiveness and significance of the optical filtering.
PPT Slide
Lager Image
광필터 적용 전후의 광세기 비교 (a) 광필터 적용 전 (b) 광필터 적용 후 Fig. 12 Light intensity comparison before and after the optical filter is applied (a) Without the filter (b) With the filter
With this filter attached, we continued to experiment the proposed VLC data communication. By keeping approximately 1.5m between two points, 3,904 frames equivalent of 124,928bits are transmitted. The frame and bit error rates are measured and shown in Fig. 13 . Further to the above measurements, it would be interesting to observe performance variation according to the distance between the transmitter and receiver. For this measurement, we measured the performance from 0m to 2.5m in terms of distance. Fig.14 and Fig.15 are shown the frame and bit error rates, respectively.
PPT Slide
Lager Image
가시광 데이터 전송의 프레임 및 비트 오율 Fig. 13 Frame and bit error rates of the VLC data transmission
PPT Slide
Lager Image
거리에 따른 프레임 오율 Fig. 14 Frame error rates with distance
PPT Slide
Lager Image
거리에 따른 비트오율 Fig. 15 Bit error rate with distance
The bit error rates over distance appear to be nearly constant, although the measurements over a relatively short distance show slightly higher error rates. In other words, the error rates are approximately between 1% and 2% for a given number of frames transmitted. Therefore, the outdoor VLC transmission over a given distance can be said to be successful. The curve fitting for the bit error rate has been conducted and is found below.
PPT Slide
Lager Image
where c 0 =0.0087, c 1 =0.0005, c 2 =-8 e -6 and c 3 =3 e -8 . Likewise, the frame error rate with respect to distance is also found with different coefficient values: c 0 =0.1816, c 1 =3 e -6 , c 2 =- e -5 and c 3 =7 e -8 .
It is important to note that the frame and bit error rates alike increase sharply at a distance of approximately 2.5m. This finding indicates that the VLC data transmission is reliable up to a certain distance, although the optical filter is employed, beyond which the LED intensity is not sufficiently strong to convey any data and thus light noise becomes dominant, thereby causing significant transmission errors.
It should be noted that due to the fact that relatively low-power LED (3W) with 9V/1A supply is employed, the distance we have achieved is approximately 2.5m. Also, for the same reasons, FER and BER are shown to be somewhat limited to 10 -1 and 10 -2 , respectively. This power LED is applied usually for illumination as well as communication. However, the distance can be further increased and also the performance can be enhanced with more sophisticated and high power driven LEDs. We note that a laser LED (or laser diode [11] ), which is more suited to communication rather than illumination, can be applied to extend the distance as the laser diode produces coherent radiation in which the waves are all at the same frequency and phase in the visible spectrum.
Ⅳ. Conclusions
An experimental visible light data communication system has been presented. Based on the unique optical filter made of microlouver film, the proposed system is able to convey data over a certain distance. Thus, the experimental system combined with the optical filter offers a reliable and efficient outdoor VLC transmission. The VLC data link, however, shows a degree of vulnerability as the distance increases. This is due to the fact that the data-bearing intensity becomes weaker as the receiver moves away. An extended distance for the outdoor VLC data communication would be obtained with more advanced LEDs, such as laser diode. Even so, the proposed system manifests itself in presenting the viability of future outdoor free space VLC networks using already established infrastructure.
Acknowledgements
본 과제(결과물)는 교육부의 재원으로 지원을 받아 수행된 산학협력 선도대학(LINC) 육성사업의 연구결과입니다.
BIO
김용현(Yong-hyeon Kim)
2014년 부경대학교 정보통신공학과 (공학사)
2014년-현재 부경대학교 정보통신공학과 석사과정
※관심분야 : 실내외 가시광통신, 스마트폰 가시광통신
정연호(Yeon-ho Chung)
1984년 경북대학교 전자공학과(공학사)
1992년 영국 Imperial College London (공학석사)
1996년 영국 Liverpool University (공학박사)
2006년 미국 Pennsylvania State University 객원교수
2001년-현재 부경대학교 정보통신공학과 교수
※관심분야 : 가시광통신 기술, 적응 변복조, OFDM
References
Kumar N. , Lourenco N. , Terra D. , Alves L. N. , Aguitar R. L. 2012 “Visible light communications in intelligent transportation systems,” IEEE Intelligent Vehicles Symposium 748 - 753
Komine T. , Nakagawa M. 2004 “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consumer. Electron 50 (1) 100 - 107    DOI : 10.1109/TCE.2004.1277847
Tanaka Y. , Haruyama S. , Nakagawa M. 2003 “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans, on Communications E86-B(8) (8) 2440 - 2454
Lourenco N. , Domingos T. , Navin K. , Alves L. N. , Aguitar R. L. 2012 “Visible light communication system for outdoor applications,” Proc. of 8th Int’l Symposium on Comm. Sys. Networks and Digital Signal Processing
Lee I. E. , Sim M. L. , Kung F. W. L. 2009 “Performance enhancement of outdoor visible light communication system using selective combining receiver,” IET Optoelectron 3 (1) 30 - 39    DOI : 10.1049/iet-opt:20070014
Google Android Available: http://developer.android.com
TSL252R Date Sheet
2011 Advanced Solutions for Light Enhancement, Control and Protection
Open-source electronics platform Available: http://arduino.cc
GT-N7000 Available: http://forum.xda-developers.com
Visible Laser Diode Available: http://www.laser66.com