Advanced
Estimation of Wave Loads Acting on Stationary Floating Body Using Viscous Numerical Wave Tank Technique
Estimation of Wave Loads Acting on Stationary Floating Body Using Viscous Numerical Wave Tank Technique
Journal of Ocean Engineering and Technology. 2013. Jun, 27(3): 43-52
Copyright © 2013, Korean Society of Ocean Engineers
  • Received : January 22, 2013
  • Accepted : June 10, 2013
  • Published : June 30, 2013
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
경미 김
재경 허
세민 정
종천 박
우전 김
용진 조

Abstract
In the present study, a flow analysis for estimating the wave loads acting on a stationary floating body inside a viscous numerical wave tank was performed using the commercial software FLUENT. The governing equations for the viscous and incompressible fluid motion were the continuity and Navier-Stokes equations, and a piston-type wavemaker was employed to reproduce wave environments. First, the optimal simulation conditions were derived through numerical tests for the wavemaker and wave absorber, and then the wave loads and wave run-up on a vertical truncated cylinder were estimated and compared with the experimental and other numerical results.
Keywords
1. 서 론
인류의 해상활동 증가로 인해 과거 선박에 국한되어 있던 해상수단에서 다양한 목적을 지닌 해양구조물 개발이 활발히 진행 중이다. 예를 들어, 해저 석유나 가스를 개발, 생산하기 위한 부유식 또는 고정식 해양구조물과 대형 유조선이나 LNG(Liquified natural gas)선의 접안을 위한 항만 구조물로부터 해상 석유 저장 시설이나, 해상공항 또는 해상 풍력에 이르기 까지 여러 형태의 해양 구조물이 등장하고 있다. 해양 구조물은 파랑, 바람, 조류 등 다양한 해양환경에 노출되어 있으며 복잡하고 불규칙적인 특성을 나타낸다. 이 중, 파랑은 기초설계나 구조물 각 부재의 설계에 직접적인 요인으로 작용한다. 따라서 해양 구조물 설계에 있어 파랑하중과 런업(Run-up)의 추정은 설계를 위한 해석기법에 있어 중요한 요소 중의 하나이며, 지금까지 이론 및 수치해석적인 기법과 실험들이 많이 시행되어져왔다( Dommermuth and Yue., 1987 ; Isaacson and Cheung., 1992 ; Beck., 1994 ; Wu., 1994 ; Celebi et al., 1998 ; Park et al., 2003 ).
실해역의 파랑환경을 재현하기 위해 일반적으로 물리수조를 이용한다. 그러나 해양파수조의 경우 설치비용, 실험공간, 계측방법등의 제약이 있고, 특히 바람, 조류 등을 포함한 실제적인 다양한 파랑환경 재현 등에 한계가 있다. 최근 이러한 실험적 해석방법의 한계를 극복하기 위해 시뮬레이션 기법이 널리 사용되고 있고, 특히 파랑과 구조물의 상호작용을 포함한 대진폭, 비선형성 거동을 예측하기 위해 전산유체역학(Computational fluid dynamics, CFD)을 이용한 시뮬레이션 기법이 개발되어 왔다. 비정상상태의 Navier-Stokes(N-S) 방정식을 푸는 CFD 해석은 많은 계산시간이 소요되고 적용성이 아직 입증이 되지 않았다는 단점이 있지만 비선형성이 강한 복잡한 공학적 응용문제나 점성의 영향이 지배적인 유동 현상에 대해서는 실제 현상에 보다 가까운 결과를 보여준다.
최근, 물리파랑수조(Experimental wave tank, EWT)에 있어서의 설치비용, 실험공간, 계측방법, 실험의 다양성 등의 제한에서 오는 한계를 극복하기 위하여, 시뮬레이션 공학에 기초하고 가상공간의 컴퓨터를 이용한 수치파랑수조(Numerical wave tank, NWT)의 기술개발이 현저하다.
NWT는 각종 파랑환경 재현장치(예를 들면, 수치조파기, 수치조류장치, 수치소파기 등)나 비선형성 자유표면에 관한 경계조건을 부여하고 자유표면을 갖는 유동장에 대해 지배방정식인 N-S 방정식을 시간적분해서 풀어나가는 것이다. 이러한 CFD 기술을 이용하여 Park et al.( Park et al., 1993 ; Park et al., 1999 ; Park et al., 2001 ; Park et al., 2003 ; Park et al., 2004 )은 해양환경하에서 해양구조물의 파랑중 운동 시뮬레이션 수행을 목적으로 점성 수치파랑수조(Numerical wave tank, NWT) 시뮬레이션 기법을 개발하였다. 특히, 수치조파기술의 정확도와 특성을 파악하기 위해 규칙파의 조파 시뮬레이션을 수행하여 규칙파 재현을 위한 최적의 격자 크기와 시간에 대한 샘플링 수를 도출하였다.
본 연구에서는 상용 소프트웨어인 FLUENT ver. 13을 사용하여 점성 수치파랑수조 내의 고정된 부유체의 파랑하중을 산출을 위한 유동장 해석을 수행하였다. 비압축성 유체의 지배 방정식으로는 연속방정식과 Navier-stokes 방정식을 사용하였으며, 피스톤 형(Piston type)의 수치 조파기를 사용하여 파랑환경을 재현하였다. 먼저, 수치파랑수조의 타당성 검토를 위해 먼저 규칙파랑을 재현을 위한 수치조파기와 소파기의 수치실험을 실시한 후, 규칙파랑 중 고정된 부유체에 작용하는 파랑하중 및 소상파고 (Wave run-up)의 시뮬레이션 결과를 실험값과 비교하여 타당성을 검증하였다.
2. 수치 시뮬레이션 기술
- 2.1 지배방정식 및 계산 알고리즘
비압축성 유체의 지배 방정식으로는 다음과 같은 연속방정식과 Navier-stokes 방정식을 사용하였다.
PPT Slide
Lager Image
PPT Slide
Lager Image
여기서 U 는 속도벡터, 𝜌는 밀도, t 는 시간, x 는 좌표, p 는 압력, v 는 동점성계수,
PPT Slide
Lager Image
는 난류 응력, g 는 중력가속도를 나타낸다.
본 연구에서는 상용 소프트웨어인 Gridgen ver. 15.17을 사용하여 격자를 생성하고 FLUENT ver. 13을 사용하여 유동장 해석을 수행하였다. 사용한 FLUENT는 유한체적법에 기초한다. 지배방정식은 유한체적법에 의해 이산화 되며, 대류항과 난류항에는 3차 정확도의 MUSCL(Monotone upstream-centered schemes for conservation laws) 스킴을, 속도와 압력의 연성을 위하여 PISO(Pressure implicit with splitting of operators) 법을 사용하였다. 지배방정식에 포함된 난류에 의해 발생되는 응력을 가정하기위해 기본적으로 k – 𝜖 realizable 모델을 사용하고, 자유표면은 계산의 안정성을 고려하여 음해법의 HRIC(High resolution interface capturing)을 적용한 VOF(Volume-of-fluid) 법( Hirt and Nichols, 1981 )을 사용하였다.
- 2.2 경계조건
바닥면과 물체의 표면에는 벽조건(No slip 조건)을 적용하였고, 공기와 물의 연직방향의 계산영역은 동일한 크기로 설정하였다. 유입경계는 수치조파기를, 유출경계와 계산영역의 윗면에는 UDF(User defined file)에서 설정한 압력유출조건(Neumann 조건)을 적용하였다.
유입경계에서의 수치조파기는 피스톤형의 조파기를 설정하였으며, 피스톤형 조파기 조건은 i) 수치조파기를 직접 움직이는 경우( Liu et al., 2008 )와, ii) 수치조파기의 속도에 해당하는 조건만 유입경계에 부여하는 경우의 두 가지를 고려하였다. 먼저, 피스톤형 조파기를 직접 움직이는 경우, 계산영역의 일부 구간에서 매 시간 격자의 움직임에 따라 격자를 재생성 해줘야 한다. 본 연구에서는 격자의 재생성 구간을 조파기로부터 0.5 L ( L 은 파장) 정도로 설정했다. 피스톤형 조파기는 다음과 같은 식에 의해 움직인다.
PPT Slide
Lager Image
여기서, x 는 조파기의 변위, u 는 조파기의 속도, S 는 조파기의 스트로크(Stroke), T 는 주기, ω 는 파의 각주파수를 각각 나타낸다. 단, 우변의 괄호 안은 조파기의 가속구간과 관련이 있으며 𝛼는 가속 관련 파라미터이다.
한편, 피스톤을 직접 움직이지 않고 이에 상응하는 속도분포를 수치조파기에 부여하기 위해서 다음과 같은 조건을 부여한다.
PPT Slide
Lager Image
이후 피스톤을 직접 움직이는 경우를 "Piston-moving"이라 하며, 피스톤의 속도 분포를 부여하는 경우를 "Piston-velocity"이라 구분하기로 한다.
3. 파랑환경 재현을 위한 수치 시뮬레이션
- 3.1 시뮬레이션 조건
먼저, 수치조파기술의 특성과 정확도를 파악하기 위하여 규칙파의 조파 시뮬레이션을 수행하였다. Fig. 1 에는 규칙파를 생성하기 위한 수치파랑수조의 개략도를 나타내며, 계산영역( LC )은 파장의 5배, 그리고 감쇠영역( LD )은 10배로 각각 설정하였다. 단, 감쇠영역은 파랑의 반사파의 영향을 최소화하기 위해 Park et al.(1999 ; 2001) 이 제안한 격자감쇠(Grid damping)와 수치소산 스킴(Numerical damping scheme)을 적용하였다. 시뮬레이션 조건은, 수심 d =2m, 주기 T =1.41s, 파장 L =3m, 파고 H =2 A =0.1m, 파도의 기울기 H / L =1/30이며, Fig. 2 에는 이론한계 범위와 함께 적색 원으로 표시하였다. 격자의 크기는, Park et al. (2004) 의 조건을 바탕으로, 파장에 대해 Nx =30~60, 파고에 대해 Nz =10~40분할의 값을 사용하였으며, 주기에 대해서는 Nt =1000 분할의 값을 유지하였다. 이 때 사용된 총격자수는 2~30,000개이며, 감쇠영역에서의 x -방향 격자수는 동일하게 80개를 사용하였다. 또한, 시뮬레이션의 초기 5 T 동안에는 가속구간을 설정하였다.
PPT Slide
Lager Image
Schematic diagram of NWT for regular wave generation
PPT Slide
Lager Image
Regions of validity for various wave theories, in which the present wave condition is marked by red circle. (captured from Shore Protection Manual(1984))
- 3.2 감쇠영역의 길이에 따른 소파 효과
Fig. 3 은 조파기에 의해 생성되는 파고의 시계열을 나타낸다. 파고기는 조파기로부터 파장의 2배인 x =2 L 인 지점, 감쇠영역이 시작되는 x =5 L 인 지점, 그리고 감쇠영역의 끝단인 지점에서 생성되는 파고를 관측하였다. 초기의 5 T 동안의 가속구간 직후 정상적인 파가 발생하기 시작한다. 시각 t =9~10 T 이후에는 안정화 되고, 일정한 형태의 파형이 유지되는 것을 알 수 있다. 하지만, 감쇠영역의 길이가 상대적으로 작은 LD =3 L 의 경우, t =12 T 부근부터 계산영역에서 계측된 파고가 감소하는 것을 볼 수 있는데, 이는 감쇠영역의 끝단에서 계측된 파고가 증폭되어 감쇠영역의 끝단에서 완전히 소멸되지 않고 반사되어 계산영역에 영향을 주는 것으로 이해할 수 있다. 한편, 이러한 반사파의 영향은 감쇠영역의 길이가 LD =5 L LD =10 L 로 길어짐에 따라 점차 개선되는 것을 알 수 있다. 따라서 감쇠영역에서의 반사파로 인한 영향을 최소화하기 위하여 LD =10 L 정도의 길이가 확보되어야 한다는 사실을 알 수 있다.
PPT Slide
Lager Image
Time-series of wave elevation for various lengths of damping region
- 3.3 격자의 수렴성 테스트
피스톤형의 조파 시뮬레이션에 있어서 격자 수렴성 테스트를 수행하였다. Tables 1 ~ 2 에는 각각의 조건을 나타낸다. Fig. 4 에는 Nx 를 변화시킬 경우, Fig. 5 에는 Nz 를 변화시켰을 경우의 시뮬레이션 된 파고의 결과를 나타낸다. 이 때 파고는 수치조파기로부터 x =1 L 과 2 L 만큼 떨어진 지점에서 계측되었으며, 최대격자를 사용하였을 때 얻어진 파고를 기준으로 무차원화 되었다. 시뮬레이션 결과로부터, 두 가지 피스톤형의 조파의 경우 모두 격자 수가 증가함에 따라 수렴하는 경향을 보이지만, "Piston-velocity"의 경우가 상대적으로 격자수에 대한 민감도가 적게 나타난다. 이후의 연구에서는 파고당 30분할, 파장당 50분할을 사용 하여 시뮬레이션을 수행하였다.
Condition of simulation for grid convergence tests forNx
PPT Slide
Lager Image
Condition of simulation for grid convergence tests for Nx
Condition of simulation for grid convergence tests forNz
PPT Slide
Lager Image
Condition of simulation for grid convergence tests for Nz
PPT Slide
Lager Image
Grid convergence test for Nx
PPT Slide
Lager Image
Grid convergence test for Nz
- 3.4 비선형성 파도의 재현
Fig. 6 에는 피스톤형의 수치조파기로부터 생성된 파형을 1차 Ariy 파형 및 2차 Stokes 파형과 비교하였다. Fig. 2 에 나타낸 바와 같이, 본 연구에서 시뮬레이션 한 조건은 2차 Stokes 파로 근사가 가능하며, 결과적으로 피스톤형 조파기에 의해 생성된 파형은 2차의 Stokes 파형과 일치함을 알 수 있다. 또한, 수치조파기 중 "Piston-velocity"의 경우가 "Piston-moving"의 경우에 비해 파정부분에서 2차 Stokes 파형에 보다 더 근접하는 것을 알 수 있다. 즉, 최대 오차가 발생하는 파정 부근에서 2차의 Stokes 파형에 비해 "Piston-velocity"의 경우 1.85% 크게, 그리고 "Piston-moving"의 경우 1.96% 작게 나타났다.
PPT Slide
Lager Image
Comparison of wave profiles probed at x=2L
- 3.5 피스톤형 조파기의 스트로크 함수의 도출
피스톤형 조파기의 경우, 현실적으로 목적 파고를 얻기 위한 조파기의 진폭 설정에 다소 어려움이 있다. 따라서 본 연구에서는 피스톤형 수치조파기를 이용할 경우 보다 용이하게 목적 파고를 얻기 위해 수심에 대한 파고와 스트로크 비에 관한 함수를 산출해 보았다. Fig. 7 에는 "Piston-moving"과 "Piston-velocity"의 두 경우에 대한 수심에 대한 파고와 스트로크 비의 관계를 시뮬레이션 결과로부터 산출하여 나타낸다. 결과적으로, kd ≈1.5 이상의 영역에서 양자간의 차이가 나타나며 "Pistonmoving"의 경우가 "Piston-velocity"의 경우에 비해 상대적으로 파고가 다소 작게 산출되는 것을 알 수 있다. 이는 "Pistonmoving"의 경우 조파기로부터 0.5 L 이내의 격자들이 매 시각 재생성되어 조파기 부근의 격자간격이 상대적으로 다른 격자간격에 비해 커 이로 인한 수치 오차 때문인 것으로 분석된다.
PPT Slide
Lager Image
Simulated wave height to stroke ratios versus relative depths
- 3.6 3차원 파형과의 비교
다음은, 3차원 시뮬레이션에 대한 가능성을 살펴 보았다. 전술한 2차원의 계산 조건으로 y방향에 1.5 L 정도의 계산영역을 설정하여 40개의 격자를 사용하였다. 이 때, 사용된 총 격자수는 2차원의 경우 2만 4천개, 3차원의 경우 약 73만개이다. 이 때, 가속시간은 2.5 T 로 설정하였다. Fig. 8 은 3차원 수치파랑수조에서 생성한 파의 형상을 보여주며, Fig. 9 는 2차원과 3차원 시뮬레이션에서 있어 파형의 비교를 나타낸다. 가속구간을 제외한 전 시각에서 양자 간 잘 일치하지만, 파저 부분에서 약 1% 미만의 차이가 발생한다. 총 8주기의 시뮬레이션에 소요된 계산시간은 2차원의 경우 1시간 20분이고 3차원의 경우 약 19시간으로, 약 14배 가량 더 소요되었다. 단, 계산환경은 Intel Xenon CPUX5650 RAM-24G의 병렬계산기이며 Fluent의 8노드 병렬 계산으로 진행하였다.
PPT Slide
Lager Image
Bird-eye view of three-dimensional wave configuration
PPT Slide
Lager Image
Comparison of wave profile between 2-D and 3-D simulation with the same stoke of piston-type wavemaker, which probed at x=1L
4. 고정된 부유체에 작용하는 파랑하중 산출
- 4.1 시뮬레이션 조건
고정된 부유체의 유체력 산정을 위해 서로 다른 제원을 가진 두 가지 실린더 모형에 대해 실험결과 및 타 수치계산 결과를 비교하여 본 논문에서 사용한 NWT 기술의 타당성을 검증하였다. 이 때, Model1은 Sung et al.(2007) 에서, 그리고 Model2는 Mercier et al.(1994) 에서 사용한 모형과 동일하며, 각각의 제원은 Table 3 에 나타낸다. 특이한 점은 Model2의 흘수가 Model1에 비하여 상대적으로 크다는 것이다. 파랑환경조건은 두 모형에 대해 각각 동일한 파경사를 갖는 네 가지 경우에 대해 시뮬레이션을 수행하였으며 Tables 4 ~ 5 에 요약한다.
Geometry condition of vertical truncated cylinder
PPT Slide
Lager Image
Geometry condition of vertical truncated cylinder
Calculation condition for truncated cylinder in model1
PPT Slide
Lager Image
Calculation condition for truncated cylinder in model1
Calculation condition for truncated cylinder in model2
PPT Slide
Lager Image
Calculation condition for truncated cylinder in model2
Fig. 10 은 고정된 부유체의 시뮬레이션을 위해 사용된 3차원 수치조파수조의 개략도이다. 수치조파수조의 전 계산영역( LC )은 4 L 이고 조파기로부터 x =2 L 만큼 떨어진 지점에 물체를 위치시켰다. 또한 감쇠영역( LD )의 길이는 3.2절의 결과에 기초하여 반사파의 영향을 최소화 할 수 있도록 10 L 로 설정하였다. 이때 수조의 폭은 물체 반경의 10배로 설정하였다. 한편, 격자의 크기는 3.2절에서 도출된 조건을 사용하였다.
PPT Slide
Lager Image
Schematic view of the 3-D numerical wave tank
- 4.2 시뮬레이션 결과
수치 시뮬레이션으로부터 얻어진 결과를 바탕으로 실린더에 입사파의 진행 방향으로 작용하는 수평파랑하중( Fx )과 소상파고( AR )에 대해 Fourier 분석을 수행하였다.
먼저, Model1의 경우 파수( k 0 = 2𝜋/ L )에 대한 수평파랑하중의 1차(
PPT Slide
Lager Image
) 및 2차(
PPT Slide
Lager Image
) 조화성분을 Fig. 11 에 나타낸다. 이 때, 파랑하중은 F (1) = Force (1) / pgr 2 A F (2) = Force (2) / pgr A 2 로 무차원화 되며, 여기서 r 은 실린더 반경, Force (1) Force (2) 는 수평파랑하중의 1차 및 2차 조화성분, 그리고 A 는 물체가 없을 경우 입사파의 1차 조화성분의 진폭을 의미한다. 본 시뮬레이션 결과의 타당성 검증을 위해 Morison 방정식( Morison et al., 1950 ), Sung et al.(2007) 이 수행한 FEM(Finite element method) 해석(2차 파랑이론을 이용한 유한요소법) 및 실험결과와 함께 비교하였다. 전체적으로 실험과 시뮬레이션 모두 1차 조화성분은 파수가 커짐에 따라 파랑하중이 증가하며 2차 조화성분은 감소하는 특징을 나타낸다. 본 시뮬레이션 결과는 Morison 방정식이나 FEM 해석 결과에 비해 실험값에 보다 근접한 결과를 보이고 있다.
PPT Slide
Lager Image
Horizontal wave forces on a vertical truncated circular cylinder, Model1
해양구조물의 설계에 있어서 부유체에 작용하는 파랑하중의 산정은 무엇보다도 중요하지만, 때로는 비선형성 파랑과 부유체의 상부구조물과의 상호작용이 문제가 되기도 한다. 따라서 정수면으로부터 상부구조물 밑면까지의 적절한 간격(Clearance)을 결정하기 위하여 부유체에서의 소상파고(Wave run-up)의 예측이 필요하다. 실린더의 전면(Whether side)과 후면(Lee side)의 소상 파고를 계측하기 위하여 Fig. 12 와 같이 Model1의 a와 b지점에 파고계를 설치하였다. 계측된 두 지점의 소상파고의 시계열로부터 Fourier 변환을 통해 1차 및 2차 조화성분을 추출하여 그 결과를 Fig. 13 에 나타낸다. 이 때, 소상파고는 AR / A 과 같이 무차원화 하였다. 결과적으로 실린더의 전면에서는 입사파의 진폭보다 큰 파고가 얻어지며 파수가 커짐에 따라 거의 입사파 진폭의 1.5배가 넘는 값을 보인다. 한편 실린더의 후면에서는 본 계산조건 하에서 파수의 변화와 관계없이 거의 입사파의 진폭과 동일한 값이 얻어지는 것을 알 수 있다. 전반적으로 본 시뮬레이션 결과는 FEM 해석결과 및 실험과 잘 일치하는 경향을 보인다.
PPT Slide
Lager Image
Location of probes for wave run-up
PPT Slide
Lager Image
The first-order harmonic components of wave run-up for Model1
Fig. 14 는 Model1의 Case3의 조건 하에서 실린더와 상호작용하는 파형을 나타낸다. Fig. 14(a) 는 실린더 전면에 최대 소상파고가 도달했을 경우이고 (b) 는 후면에 최소 소상파고가 도달했을 경우를 나타낸다. 이 때, Fig. 14(a) 에서는 양의 최대 수평파랑하중이 작용하며 (b)에서는 음의 최대 수평파랑하중이 작용하게 된다. 실린더의 근방에는 실린더와의 회절(diffraction)에 의해 입사파의 1/4의 주기를 갖는 동심원 형상의 2차 자유파(2nd- order free waves)가 생성되어 있으며, 이는 2차 자유파는 실린더로부터 독립적으로 주변에 전파된다( Isaacson and Cheung, 1992 ; Park et al., 2003 ).
PPT Slide
Lager Image
Snapshots of wave run up around a vertical cylinder in case3 of Model1, in which positive and negative maximum wave forces are indicated at (a) and (b), respectively
다음으로, Model2의 경우 파수에 대한 수평파랑하중의 조화 분석 결과를 Fig. 15 에 나타낸다. 단, Model2의 경우 파랑하중에 관한 실험결과의 부재로 인해 Morison 방정식의 결과 및 타 CFD 시뮬레이션인 NS-MAC NWT 결과( Park et al., 1999 )와의 비교를 나타낸다. 1차 조화성분의 경우 본 계산결과 및 타 CFD의 결과는 Morison 방정식과 좋은 일치를 보이는데 이는 점성효과에 비해 회절효과가 현저하기 때문일 것이다. 한편 무차원화된 파랑하중은 1차 조화성분의 경우 파경사가 1/30인 Model1과 거의 유사한 값을 보이지만, 2차 조화성분의 경우 작게 나타난다. 이는 상대적으로 파의 기울기가 큰 Model2의 경우 2차 조화성분이 작아지며 k0r 에 따른 분산도가 높다는 것을 의미하며 Sung et al.(2007) 의 실험 결과에서도 관찰된다.
PPT Slide
Lager Image
Horizontal wave forces on a vertical truncated circular cylinder, Model2
Fig. 16 은 실린더의 바닥 중심에 작용하는 동압(Dynamic pressure)의 1차 및 2차 조화성분을 산출하여 실험( Mercier and Niedzwecki, 1994 ) 및 타 CFD 시뮬레이션인 NS-MAC NWT 결과( Park et al., 1999 )를 비교하였다. 이때 동압은 P (1) =Pressure (1) / pgA , P (2) =Pressure (2) r / pgA 2 과 같이 무차원화 하였다. 1차 조화 성분의 경우, 시뮬레이션과 실험 모두 좋을 일치를 보이며, 2차 조화성분 역시 타당한 결과를 보여준다. 바닥 중심에서의 압력은 2차 조화성분이 상대적으로 큰 값을 보이는데 이는 바닥 중심에서의 압력진동이 심하다는 것을 의미하며 맥동(Microseism) 현상( Longuet-Higgins, 1950 )과 깊은 관계가 있는 것으로 판단된다.
PPT Slide
Lager Image
Hydrodynamic pressure at the center of bottom in case2 of Model2
Figs. 17 ~ 18 은 Model1의 경우와 마찬가지로 실린더 전면과후면에서 계측된 소상파고의 1차 및 2차 조화성분을 각각 나타낸다. 1차 조화성분의 경우 Model1과 경향은 비슷하지만, 파경사가 큰 Model2의 경우 실린더 전면에서는 파수가 커짐에 따라 입사파의 두 배가 넘는 높은 소상파고가 얻어지며 실린더 후면에서는 파수가 작아짐에 따라 입사파의 진폭보다 다소 큰 소상파고가 얻어진다. 2차 조화성분의 경우 실린더 전면과 후면 모두 파수가 커짐에 따라 증가하는 경향을 보이고 있다. 전체적으로 실험과 본 시뮬레이션의 결과가 잘 일치함을 알 수 있다.
PPT Slide
Lager Image
The first-order harmonic components of wave run-up for Model2
PPT Slide
Lager Image
Second-order harmonic components of wave run-up for Model2
Fig. 19 는 Model2의 Case4의 경우 실린더 주변에 전파되는 파형과 그 때 실린더 표면에 작용하는 전압력(Total pressure) 분포를 나타낸다.
PPT Slide
Lager Image
Snapshots for configuration of free-surface and distribution of total pressure(in pascal) in case4 of Model2, in which vertical scaling 2 times up.
5. 결 론
본 연구에서는 점성 수치파랑수조 기술을 이용한 고정된 해양 구조물의 파랑하중 및 소상파고를 산정하였다. 먼저, 수치조파기술의 타당성을 검증하기 위해 규칙파랑환경 재현을 위한 시뮬레이션을 수행하였다. 반사파의 영향을 효율적으로 억제시키기 위하여 감쇠영역의 최적화된 조건을 도출하였으며, 파랑을 재현하기 위한 피스톤 조파기의 경우, 조파기를 직접 움직이는 것 보다 조파기에 속도조건만 부여하는 것이 계산시간 면에서 더욱 효율적이며 격자의 민감도도 적음을 확인하였다. 또한 격자수에 대한 수렴성 테스트를 수행하여 격자 의존성에 대해 살펴보았으며 파랑재현을 위한 적절한 조건을 도출하였다. 이러한 최적화된 시뮬레이션 조건을 바탕으로 해양구조물에 가장 보편적으로 사용되는 형상인 원형실린더에 작용하는 파랑하중과 소상파고를 산정하여 실험 및 타 계산결과와 비교하였다. 결과적으로 본 연구에서 사용한 점성 수치파랑수조 기술의 타당성을 확인할 수 있었으며, 향후 상대적으로 점성의 영향이 큰 파랑-조류와 상호작용하는 해양구조물의 유체력 산정이나 대진폭의 운동성능 예측에 보다 유용하게 활용될 것으로 기대된다.
It is noted that this paper is revised edition based on proceedings of KAOST 2012 in Daegu.
Acknowledgements
본 연구는 지식경제부의 재원으로 에너지기술평가원의 지원을 받아 수행한 '천해용 해상풍력 Substructure 시스템 개발(과제 번호: 2011T100200105)'의 결과를 바탕으로 작성되었음을 밝히며 연구비 지원에 감사드립니다.
References
Beck R.F. 1994 Time-domain Computations for Floating Bodies Applied Ocean Research 16 267 - 282    DOI : 10.1016/0141-1187(94)90016-7
Celebi M.S. , Kim M.H. , Beck R.F. 1998 Fully Nonlinear 3D Numerical Wave Tank Simulation J Ship Res 42 33 - 45
Dommermuth D.G. , Yue D.K.P. 1987 Numerical Simulations of Nonlinear Axisymmetric Flows with a Free Surface J Fluid Mech 178 195 - 219    DOI : 10.1017/S0022112087001186
Hirt C.W. , Nichols B.D. 1981 Volume of Fluid (VOF) Method for the Dynamic of Free Boundaries Journal of Computational Physics 39 201 - 225    DOI : 10.1016/0021-9991(81)90145-5
Issacson M. , Cheung K.F. 1992 Time-domain Second-order Wave Diffraction in Three Dimension Jounal of Waterway, Port, Coastal and Ocean Engineering ASCE 118 (5) 496 - 516    DOI : 10.1061/(ASCE)0733-950X(1992)118:5(496)
Liu Z. , Hyun B.S. , Jin J.Y. 2008 Numerical Prediction for Overtopping Performance of OWEC Journal of the Korean Society for Marine Environment and Energy 11 (1) 35 - 41
Longuet-Higgins M.S. 1950 A Theory of the Origin of Microseisms. Philosophical Transactions of the Royal Society of London. Series A Mathematical and Physical Sciences 243 (857) 1 - 35    DOI : 10.1098/rsta.1950.0012
Mercier R.C. , Niedzwecki J.M. 1994 Experimental Measurement of Second-order Diffraction by a Truncated Vertical Cylinder in Monochromatic Waves Proc. 7th Int Conf Behavior of Offshore Structure 2 265 - 287
Morison J.R. , O'Brien M.P. , Johnson J.W. , Shaff S.A. 1950 The Forces Exerted by Surface Waves on Piles Petroleum Transactions, AIME 189 149 - 154
Park J.C. , Zhu M. , Miyata H. 1993 On the Accuracy of Numerical Wave Making Techniques Journal of the Society of Naval Architects of Japan 173 35 - 44
Park J.C. , Kim M.H. , Miyata H. 1999 Fully Non-linear Freesurface Simulation by a 3d Viscous Numerical Wave Tank International Journal for Numerical Method in Fluid 29 685 - 703
Park J.C. , Kim M.H. , Miyata H. 2001 Three-dimensional Numerical Wave Tank Simulation on Fully Nonlinear Wave-current-body Interactions Journal of Marine Science and Technology 6 70 - 82    DOI : 10.1007/s773-001-8377-2
Park J.C. , Kim M.H. , Miyata H. , Chun H.H. 2003 Fully Nonlinear Numerical Wave Tank (NWT) Simulations and Wave Run Up Prediction Around 3-D Structures Ocean Engineering 30 1969 - 1996    DOI : 10.1016/S0029-8018(03)00041-6
Park J.C. , Uno Y. , Sato T. , Miyata H. , Chun H.H. 2004 Numerical Reproduction of Fully Nonlinear Multi-directional Waves by a Viscous 3D Numerical Wave Tank Ocean Engineering 31 1549 - 1565    DOI : 10.1016/j.oceaneng.2003.12.009
1984 Shore Protection Manual Coastal Engineering Research Center, Dept. of the Army USA
Sung H.G. , Kim Y.S. , Nam B.W. , Hong S.Y. 2007 Experimental Investigation of Wave Loads on a Truncated Vertical Circle Cylinder Fall Meeting of The Korean Society of Ocean Engineers
Wu G.X. 1994 Finite-element Analysis of Two-dimensional Nonlinear Transient Water Waves Applied Ocean Research 16 363 - 372    DOI : 10.1016/0141-1187(94)00029-8