Phenol/formaldehyde-derived macroporous carbon foams prepared with aprotic ionic liquid as liquid template
Phenol/formaldehyde-derived macroporous carbon foams prepared with aprotic ionic liquid as liquid template
Carbon letters. 2012. Apr, 13(2): 94-98
Copyright ©2012, Korean Carbon Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : January 01, 2012
  • Accepted : March 03, 2012
  • Published : April 30, 2012
Export by style
Cited by
About the Authors
Haebong Byun
Department of Chemical Engineering, Inha University, Incheon 402-751, Korea
Gimin Nam
Department of Chemical Engineering, Inha University, Incheon 402-751, Korea
Young-Mok Rhym
Korea Institute of Materials Science, Changwon, 641-841, Korea
Sang Eun Shim
Department of Chemical Engineering, Inha University, Incheon 402-751, Korea
Herein, macroporous carbon foams were successfully prepared with phenol and formaldehyde as carbon precursors and an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF 6 ), as a pore generator by employing a polymerization-induced phase separation method. During the polycondensation reaction of phenol and formaldehyde, BMIPF 6 forms a clustered structure which in turn yields macropores upon carbonization. The morphology, pore structure, electrical conductivity of carbon foams were investigated in terms of the amount of the ionic liquid. The as-prepared macroporous carbon foams had around 100-150 μm-sized pores. More importantly, the electrical conductivity of the carbon foams was linearly improved by the addition of BMIPF 6 . To the best of the author’s knowledge, this is the first result reporting the possibility of the use of an ionic liquid to prepare porous carbon materials.
1. Introduction
During the last two decades, interest in the preparation and utilization of carbon foams has been rapidly growing due to their advantageous properties. Carbon foams have been used as catalyst electrodes, supports, tunable thermal insulations, high temperature applications, lightweight structural parts, radar absorption materials, filters for molten metals and corrosive chemicals, etc. [1 , 2] .
Recently, a less time-consuming process for fabricating carbon foams using organic polymers has been developed. Representative examples of polymeric materials which can be used as precursors for glassy carbon foams are phenol-formaldehyde, resorcinol-formaldehyde, phloroglucinol-formaldehyde, polyvinylidene chloride, polyacrylonitrile, furfural resin, and their blends [3] . In order to produce carbon foams using polymeric precursors, the use of a sacrificial template is an efficient approach to generate pre-determined pore sizes. The sacrificial templates are impregnated or filled into carbon precursors. After the carbonization and in-situ or subsequent template removal, macroporous carbon monoliths can be easily obtained.
As an alternative method, the polymerization-induced phase separation principle has been utilized to synthesize porous carbon monoliths. An initial homogeneous solution of reactive monomers as the carbon precursor, and non-reactive components (NRCs), undergo phase separation in the course of polymerization, to give a co-continuous morphology. In this process, ethyl glycol derivatives or polyethylene glycol have been mainly used as NRCs [4] .
Room temperature ionic liquids (RTILs) are unique solvents that contain an organic cation and an inorganic anion in the liquid state at ambient condition. RTILs such as imidazolium, pyridinium, and ammonium salts have a high ionic mobility and ion concentration. In addition, RTILs have negligible vapour pressure, high thermal stability, and excellent electrical conductivity [5 , 6] . In this article, macroporous carbon foams were prepared using phenol-formaldehyde (PF) as a carbon precursor and alcohol-soluble ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF 6 ), as pore generator. The effect of the BMIPF 6 on the properties of carbon foams was investigated.
2. Experimental
- 2.1. Raw materials
Phenol (99+ %) was purchased from Sigma-Aldrich (USA). BMIPF 6 was obtained from C-tri (Korea). NaOH as a catalyst, formaldehyde (37% aqueous solution), and ethanol were supplied by Duksan Chemicals (Korea).
- 2.2. Preparation of macroporous carbon foams
Precursors for carbon foam were synthesized by a typical condensation polymerization technique. 3.24 g phenol was poured in 50 mL beaker. 0.9/1.8/3.6 g BMIPF 6 (10/20/40 wt% to 9 g ethanol, respectively) and 0.45 g NaOH were dissolved thoroughly in 0.45 g alcohol. Temperature was elevated to 50℃ . Four point three seven gram formaldehyde (the molar ratio of P/F: 1.6) was injected into the beaker and polymerization was continued at 300 rpm for 6 h. Then temperature was elevated to 70℃ and the polymerization proceeded for an additional 36 h. The cured body was pyrolyzed stepwise in order to prevent cracks on the surface: (1) ramping the temperature up to 120℃ with a heating rate of 2℃ /min and holding for 2 h, (2) raising to 600℃ and holding for 2 h, (3) increasing to 800℃ with holding for 2 h. Then it was cooled down to room temperature. Fig. 1 shows the procedure for the preparation of the carbon foams.
Lager Image
Flowchart for the preparation of carbon foams using phenolic resin and ionic liquid.
Lager Image
Scanning electron microscope microphotographs of carbon foam prepared by phenol/formaldehyde molar ratio of (a) 1.6 and (b) 3.2.
- 2.3. Characterization
Scanning electron microscope (SEM) micrographs were obtained by Hitachi S-4300. The samples were coated with platinum before characterization. Thermogravimetric analysis (TGA) was carried out using a Diamond TG/DTA Lab System (Perkin Elmer) with the heating rate of 10℃ /min. The structural properties of the carbon foams were determined by XRD (D/ MAX 2200V/PC, Rigaku, Japan) using a diffractometer with Cu Kα radiation over the 2θ range of 20-100℃ . The electrical conductivity was examined by MCP-T610 (Mitsubishi Chemical Corporation, Japan). The apparent density (ρ app ), pore size distribution and porosity (?) of the carbon foams were examined by mercury porosimetry (Micromeritics Poresizer 9320). Skeletal density (ρ s ) was calculated based on L:
Lager Image
and total volume was calculated based on [7] :
Lager Image
3. Results and Discussion
It is noted that the molar ratio of phenol (P) to formaldehyde (F) affects the resulting pore structure and pore size of the prepared porous carbon materials. A P/F molar ratio of 0.8 is a very general synthesis ratio [8] . It has been known that an 0.8 P/F molar ratio produces mesopore and micropore structures. Since we aimed to prepare macroporous carbon foams, a different P/F molar ratio was needed. Figs. 2 a and b show the structure of carbon foams using 1.6 and 3.2 P/F molar ratio. It is seen that a macroporous carbon foam structure containing plenty of pores and thin junk area was well-developed for the 1.6 P/F molar ratio, however, the 3.2 P/F molar ratio did not yield a porous structure. It means that the P/F molar ratio is an important factor to generate the desired porous structure. Therefore, 1.6 P/F molar ratio was a suitable condition for fabricating the macroporous carbon materials aimed in this study.
Fig. 3 shows the morphology of the resulting carbon foams prepared by 1.6 P/F molar ratio using different amounts of BMIPF 6 . All fabricated carbon foams have macroporous structures by the incorporation of BMIPF 6 after carbonization. Fig. 3 b-d reveal that junk areas and pore sizes are decreased with
Lager Image
Scanning electron microscope microphotographs of carbon foams prepared by PF resin with different amounts of BMIPF6: (a) 0, (b) 20, (c) 30, and (d) 40 wt%.
Lager Image
X-ray diffraction patterns of the carbon foams prepared by phenol-formaldehyde resin with different amounts of BMIPF6: (a) 0, (b) 20, (c) 30, and (d) 40 wt%.
the increase in the amount of BMIPF 6 in carbon foams. To the best of our knowledge, this is the first report suggesting that ionic liquids can be used as a liquid type pore generator in the fabrication of carbon foams. Fig. 4 represents X-ray diffraction (XRD) patterns of the carbon foams derived from PF resin and BMIPF 6 . Two broad peaks of the carbon foams could be seen at 2θ = 23 and 43℃ originating from the (002) plane of porous carbons. The (002) plane is a diffusive type and the corresponding interplaner d-spacing is 4.09 ? which is far higher than that of graphite. According to XRD patterns, it can be deduced that the resulting carbon foams were partially crystalline, but had more amorphous portion than graphite.
Lager Image
(a) Thermogravimetric analysis of a phenol-formaldehyde cured body containing 40 wt% BMIPF6, and (b) its derivative plot.
Fig. 5 shows the weight loss of cured PF body containing different amounts of ionic liquid upon heating. As shown in Fig. 5 a, 68, 66.5% weight loss of cured resole resins is caused by the removal of unreacted materials, BMIPF 6 , and by-products in the cured resin [9] . Fig. 5 b indicates the derivative plot of weight loss of cured body containing 40 wt% BMIPF 6 . The specific reaction temperature ranges were observed around 340, 450, and 530℃ , where further cross-linking and polycondensation, and carbonization reaction mainly occurred, respectively.
Table 1 summarizes the density and structure of pores of carbon foams prepared using different amounts of BMIPF 6 as a pore generator. The porosity and total volume of carbon foams are on the order of 40, 20 and 30 wt% BMIPF 6 , meanwhile bulk density is in the order of 20, 30, and 40 wt%. The porosity and apparent density
Properties of the carbon foams prepared with PF resin and BMIPF6PF: phenol-formaldehyde.
Lager Image
Properties of the carbon foams prepared with PF resin and BMIPF6 PF: phenol-formaldehyde.
Electrical conductivity of the carbon foams prepared by PF with BMIPF6PF: phenol-formaldehyde.
Lager Image
Electrical conductivity of the carbon foams prepared by PF with BMIPF6 PF: phenol-formaldehyde.
increase from 45.02% and 1.48 g/cm 3 to 51.23% and 1.54 g/cm 3 , respectively. But the carbon foam prepared by 40 wt% BMIPF 6 has 41.52% and 1.61 g/cm 3 of porosity and apparent density, respectively. During the pyrolysis, the condensation reaction released water in cured resole resin foam [10] . It is thought that the carbon foam structure is also formed by interconnection between PF and BMIPF 6 during hydrothermal treatment. BMIPF 6 dissolves in ethanol and water. It is assumed that BMIPF 6 has a clustering behavior and water molecules are released upon heating the PF cured body, which causes the change in porosity and total pore volume. But, the carbon foam prepared by 40 wt% BMIPF6 has low porosity and total volume since the saturation of BMIPF 6 disturbed its dispersion in PF resin.
Table 2 lists the electrical conductivity of carbon foams prepared using different amounts of BMIPF 6 . Interestingly, the electrical conductivity linearly increased from 3.904 to 4.425 S/cm with the increased amount of BMIPF 6 . The reason for the enhanced electrical conductivity can be found from the bulk density. Also, the ionically conductive BMIPF 6 fragment may improve the electrical conductivity even after carbonization. Finally, we found that ionic liquids can be used to prepare macroporous carbon foams and the electrical conductivity could be improved by the incorporation of ionic liquids.
4. Conclusions
This paper presents a novel preparation method of macroporus carbon material using phenol/formaldehyde with an ionic liquid, BMIPF 6 as a liquid type pore generator. In order to prepare macroporous carbon foam, the molar ratio of P/F was decided to be 1.6. By addition of BMIPF 6 , a well-developed macroporous structure was obtained in the range of 10-40 wt% of BMIPF 6 . The porous structure was developed by the phase separation between PF resin and BMIPF 6 during polycondensation reaction. XRD analysis reveals that amorphous-rich carbon materials with a small crystalline portion were successfully fabricated. It was seen that various aspects of the porous carbon such as porosity, bulk density, apparent density, total volume, and morphology were controllable by changing the amount of BMIPF 6 . Up to the 30 wt% BMIPF 6 , the carbon foams had higher porosity and total pore volume. Interestingly, the electrical conductivity of the carbon foams was progressively enhanced with the amount of BMIPF 6 due to greater bulk density and the residual BMIPF 6 fragment after carbonization.
This work was supported by a grant (M2009010020) from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy (MKE), Republic of Korea.
Zhang L , Ma J (2009) Processing and characterization of syntactic carbon foams containing hollow carbon microspheres. Carbon 47 1451 -
Kosonen H , Valkama S , Nykanen A , Toivanen M , ten Brinke G , Ruokolainen J , Ikkala O (2006) Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin. Adv Mater 18 201 -
Prabhakaran K , Singh P , Gokhale N , Sharma S (2007) Processing of sucrose to low density carbon foams. J Mater Sci 42 3894 -
Lafyatis DS , Tung J , Foley HC (1991) Poly(furfuryl alcohol)-derived carbon molecular sieves: dependence of adsorptive properties on carbonization temperature, time, and poly(ethylene glycol) additives. Ind Eng Chem Res 30 865 -
Lu X , Zhou J , Zhao Y , Qiu Y , Li J (2008) Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chem Mater 20 3420 -
Jacob DS , Rothschild A , Tuller HL , Gedanken A (2010) In situ sonochemical hydrolysis and deposition of composite layers of ionic liquid entrapped in colloidal silica network and their application as sensors for various gases. Ultrason Sonochem 17 726 -
Lu Y , Li Z , Wang P , Yang C (2011) Preparation of mesophase pitch-based carbon foams with supercritical toluene. J Appl Polym Sci 121 336 -
Meister JJ (2000) Polymer Modification: Principles, Techniques, and Applications, Marcel Dekker New York 575 - 705
Morterra C , Low MJD I.R (1985) studies of carbons?VII. The pyrolysis of a phenol-formaldehyde resin Carbon 23 525 -
Jackson WM , Conley RT (1964) High temperature oxidative degradation of phenol?formaldehyde polycondensates. J Appl Polym Sci 8 2163 -