Advanced
Updating Building Data in Digital Topographic Map Based on Matching and Generation of Update History Record
Updating Building Data in Digital Topographic Map Based on Matching and Generation of Update History Record
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 2014. Aug, 32(4_1): 311-318
Copyright © 2014, Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : June 06, 2014
  • Accepted : August 08, 2014
  • Published : August 29, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
슬아 박
Dept. of Civil & Environmental Engineering, Seoul National University(E-mail :seula90@snu.ac.kr)
기윤 유
Member, Dept. of Civil & Environmental Engineering, Seoul National University(E-mail :kiyun@snu.ac.kr)
우진 박
Corresponding Author, Member, Dept. of Civil & Environmental Engineering, Seoul National University(E-mail :woojin1@snu.ac.kr)
Abstract
건물 데이터는 지도 데이터베이스에서 차지하는 비중이 높고 객체 수도 많을 뿐만 아니라 형상정보 및 속성정보가 빠르게 변화하기 때문에, 최신 정보에 근거한 효율적인 갱신 작업은 필수적이다. 본 연구에서는 갱신 참조 건물데이터와 갱신 대상 건물 데이터의 중첩분석을 통해 갱신이 필요한 객체만을 탐색하여 갱신을 수행하고자 한다. 즉, 건물의 중첩 면적비를 이용하여 매칭 후보쌍을 탐색한 후, 속성정보 비교를 통해 갱신 케이스 분류 조건식을 정의하였으며, 이때 도형정보 갱신 케이스는 총 8가지, 속성정보 갱신 케이스는 총 4가지로 각각 분류하였다. 또한 갱신정보에 대한 갱신 이력 데이터가 자동으로 생성되도록 하여 두 가지 종류의 갱신 케이스 정보를 저장하도록 구성하였다. 갱신 대상 데이터는 수치지도 1:5,000 건물외곽선 레이어로 하였고, 갱신 참조 데이터는 도로명주소전자지도건물 레이어로 하였으며, 서울시 관악구 지역을 대상지역으로 선정하였다. 본 연구의 매칭기반 갱신기법을 적용한 결과, 전체 건물데이터 중, 82.1%의 건물이 도형정보를 수정하였고, 34.5% 건물이 속성정보를 수정하였다.
Keywords
1. 서 론
사회가 발전함에 따라 실세계 건물은 빠른 속도로 그 형상과 용도가 변하고 있다. 지도를 포함한 GIS(Geographic Information System) 데이터베이스에서 건물 데이터가 차지하는 비율이 매우 높기 때문에, 데이터의 최신성을 유지하기 위해서는 건물 데이터가 실세계 건물의 변화를 정확하고 신속하게 반영하는 것이 매우 중요하다. 따라서 기존에 구축된 지도 데이터베이스를 최신 정보를 반영하고 있는 참조 데이터베이스를 이용하여 갱신하는 기법은 필수적이며, 기본적으로 객체의 생성, 삭제, 수정 등의 변동 사항을 갱신해야 한다(Briat et al ., 2005). 이 때 지도 내의 전체 객체를 갱신할 경우, 갱신 부분을 찾고 이를 디지타이징하는 데에는 필요 이상의 오랜 시간이 걸린다(Matikainen et al ., 2010). 따라서 전체 지도 데이터에 대한 갱신이 아니라 갱신이 필요한 객체만 탐지하여 부분적으로 갱신을 수행함으로써 갱신 작업의 효율성을 높일 수 있다.
건물 데이터의 갱신에 대한 연구는 활발히 진행되어 왔는데, Kim et al .(2008)은 인터넷 건축행정시스템 데이터베이스의 건설도면과 대장정보를 이용하여 수치지도의 건물 데이터를 갱신하는 연구를 수행하였다. 준공도면을 사용하여 기존 객체를 갱신하는 연구도 활발히 수행되었는데, Kim et al .(2000)은 소규모 지역의 변화에 대하여 준공측량도면을 이용한 수치지도의 갱신방안의 적용가능성을 검토하였고, Yang et al .(2009)은 준공도면에서 추출된 CAD 객체를 신규 객체 혹은 갱신 객체로 수치지형도에 안착시키고, 객체 간 공간관계를 반영하는 갱신 방안을 제안하였다. Kim and Yu(2012)는 축척과 갱신 주기가 다른 두 데이터 셋에서 중첩 분석을 통한 다수의 면 객체의 단일 객체화를 수행하고, 형상유사도 기반의 면 객체 매칭을 적용하여 갱신 객체를 탐지하였다. Kim et al .(2010)은 도로명주소 전자지도를 이용하여 객체 간의 기하학적 매칭을 수행함으로써 내비게이션 지도의 건물 객체를 갱신하는 방안을 제안하였다. 또한 Qi et al .(2010)은 축척이 상이한 공간 데이터 셋의 건물 객체 간에 발생되는 불일치를 분석하여 갱신 객체를 자동으로 탐지하는 방법을 제안하였다. 그러나 기존의 연구들은 대체로 매칭 쌍을 찾는 데 초점을 맞추고 있는 경우가 많고, 탐색 된 매칭 쌍에 대해 단순 대체하는 방식의 갱신을 수행하는 연구가 많았으며, 상세한 갱신사유 및 갱신 방법에 대한 연구를 수행한 사례는 많지 않다.
건물 데이터의 갱신 이력은 생성, 편집, 변환 등의 과정을 거치는 데이터에 대한 역사를 기록하는 것(KRIHS, 1996)을 말하며, 각 건물 객체의 중요한 속성 정보가 될 수 있다. 즉, 건물의 갱신 이력 데이터는 건물의 이력을 추적하거나 일정 연한 이상의 건물을 조회하는 등 건물 객체의 변동 사항을 확인하는 데 활용할 수 있으며, 건물 데이터의 관리에 효율적으로 사용될 수 있다(Lee et al ., 2008). Yang et al .(2009)은 준공도면을 참조 데이터로 활용하여 수치지형도 갱신 시스템의 이력 데이터베이스 설계 방안을 제안하는 연구를 수행하였으나 이후 갱신 이력 데이터베이스에 대한 연구가 부족한 실정이다.
이에 따라 본 연구에서는 건물 데이터의 효율적인 갱신을 위해 참조 건물 데이터와의 매칭을 통해 갱신 대상 객체를 탐지하여 해당 객체가 최신 정보를 반영하도록 하는 일련의 프로세스를 개발하여 적용하는 것을 목표로 하였다. 또한 갱신 과정에서 건물 객체의 매칭 케이스 및 갱신 케이스를 분류하여 각 케이스의 분류 조건식을 정의하였고, 정의한 케이스에 따라 갱신을 수행하는 과정에서 각 건물 객체의 변동 사항에 대한 이력 데이터, 즉 갱신 이력 데이터가 자동으로 생성되도록 하였다. 본 연구에서 제안한 방법에 의한 건물 객체의 갱신의 경우, 갱신 케이스를 분류하여 갱신이 필요한 객체만을 선별한 후 갱신을 수행하기 때문에 전수조사에 의한 기존의 갱신 방법에 비해 작업 효율성이 증가할 수 있다. 또한 생성된 갱신 이력 데이터는 향후 해당 건물 객체의 변동 사항을 빠르고 편리하게 확인하는 데 활용될 수 있다.
이를 위한 상세 연구방법으로 우선, 갱신 대상 데이터와 갱신 참조 데이터를 중첩하여 중첩 면적비를 계산하고, 공간 결합(spatial join)을 통해 매칭 쌍을 탐색한다. 탐색된 매칭쌍에 대해서 속성정보 비교를 통해 동일 건물 여부를 확인하여 최종 갱신 케이스를 분류한다. 마지막으로, 분류한 갱신 케이스에 맞게 해당 건물 객체에 대한 도형정보 갱신과 속성정보 갱신을 수행하며, 갱신 이력 데이터에 갱신 정보를 저장한다. 본 연구에서의 갱신 대상 데이터는 1:5,000 축척 수치지도의 건물외곽선 레이어, 갱신 참조 데이터는 도로명주소 전자지도의 건물 레이어로 하였다. Fig. 1 은 건물 객체의 매칭 및 갱신 프로세스를 나타낸다.
PPT Slide
Lager Image
Updating process of the building data
2. 건물 데이터의 매칭기반 갱신 케이스 분류 및 갱신 이력 코드 생성
건물 데이터에 대한 매칭 프로세스는 다음과 같다. 갱신 대상 데이터인 수치지도 건물 데이터와 갱신 참조 데이터인 도로명주소 전자지도(Korea Address Information System map, 이하 KAIS map) 건물 데이터를 중첩하여 각 객체의 중첩된 면적을 계산한 후, 수치지도 건물 데이터와 도로명주소 전자지도 각각에 대해 중첩 면적비를 계산한다. 이 때, Eq. (1)은 중첩 면적비를 계산하는 식이다.
PPT Slide
Lager Image
중첩 면적비가 계산된 두 건물 데이터에 대해 공간 결합을 수행하여 매칭 쌍을 탐색한다. 이 때 1:1 매칭과 1:n 매칭 쌍을 구분하며, 매칭 쌍의 구분은 갱신 케이스와 연계되어 총 8가지의 케이스(일치, 통합, 분리, 삭제, 추가, 확장, 축소, 변경)로 구분하여 탐색한다. 또한 적절한 임계치 이하의 중첩 면적비를 가지는 객체(본 연구에서는 실험적으로 10% 적용)는 도화 과정에서 발생한 두 지도자료 간의 위치적 오차에 의해 다른 건물과 겹치는 부분이 발생한 경우라고 간주하고 매칭되지 않은 객체로 판단하였다. Table 1 은 건물 객체에 대한 매칭 케이스의 분류 기준을 그림으로 표현한 것이다.
Classification of matching case (bright object is on the digital topographic map; dark object is on the KAIS map)
PPT Slide
Lager Image
Classification of matching case (bright object is on the digital topographic map; dark object is on the KAIS map)
속성정보 비교를 위해서는 수치지도와 도로명주소 전자지도의 건물용도 코드(필드명 - 수치지도:SERV, 도로명주소 전자지도:BDTYP_CD)를 사용하였으며, 두 코드 간의 매칭 테이블( Table 2 )을 작성하여 건물 용도에 대한 새로운 코드(TYPE; 0~25)를 부여하여 갱신에 사용하였다. 수치지도의 건물 용도 코드는 건축법 시행령(제 3조의 4)에 의거하여 건축물 용도의 종류를 나타내며, 도로명주소 전자지도의 건물 용도 코드는 동 시행령에 명시된 건축물 용도의 세부용도에 의거하여 코드를 부여하고 있다. 본 연구에서 작성한 매칭 테이블은 상위 분류를 나타내는 수치지도의 건물 용도 코드를 기준으로 각 건축물 용도에 해당되는 도로명주소 전자지도의 건물 용도 코드를 매칭하였다.
Matching table of use-code between digital topographic map and KAIS map
PPT Slide
Lager Image
Matching table of use-code between digital topographic map and KAIS map
매칭케이스 중에서 통합과 분리, 확장과 축소의 경우에는 새로 부여된 건물용도 코드의 비교를 통해 동일 건물 여부를 판단하여 갱신을 수행하였다.
다음으로, 분류된 매칭 케이스를 기준으로 도형정보 및 속성정보 갱신 케이스를 재분류하였다. 건물 객체 갱신은 도형 정보갱신과 속성 정보 갱신으로 이루어지며, Table 3 은 중첩 면적비를 이용한 매칭 케이스 및 도형정보 갱신 케이스 분류 기준을, Table 4 는 속성정보 갱신 케이스를 나타낸다.
Criteria for classification of matching and updating cases using overlay ratio
PPT Slide
Lager Image
Criteria for classification of matching and updating cases using overlay ratio
Attribute updating case
PPT Slide
Lager Image
Attribute updating case
위의 도형정보 갱신 및 속성정보 갱신에 대하여 갱신 이력 데이터를 생성하였는데, 이 갱신 이력 정보는 향후 해당 건물 객체의 변동 사항을 확인하는 데 활용할 수 있다. 갱신 이력 정보는 건물 데이터의 속성필드에 두 자리 수의 번호 형태로 자동으로 입력되도록 하였고, 실세계 건물의 용도 변화나 형상 변화를 쉽게 파악할 수 있도록 첫 번째 자리는 도형정보 갱신 케이스 번호, 두 번째 자리는 속성정보 갱신 케이스 번호로 구성하였다.
PPT Slide
Lager Image
Component of update history record
3. 적용 및 결과
갱신 대상 데이터는 2012년에 수정 갱신된 1:5,000 축척수준의 연속 수치지도 건물 레이어로 하였고, 갱신 참조 데이터는 2014년 2월에 구축된 도로명주소 전자지도의 건물 데이터를 이용하였다. 대상 지역은 서울시 관악구의 주택 및 상업용 건물 밀집 지역으로 선정하였는데, 해당 테스트 지역은 재개발 구역을 포함하고 있으며, 오피스텔 건물의 증·개축이 빈번하게 일어나는 지역이기 때문에 건물 데이터 갱신이 필수적인 지역이다.
PPT Slide
Lager Image
Test area(Gwanak-gu) on the digital topographic map(left) and the KAIS map(right)
본 연구에서의 매칭 및 갱신기법의 구현 및 실제 적용을 위해 ArcGIS 10.0 SW에서 제공하는 다양한 지오프로세싱 도구(geoprocessing tool)들과 모델빌더 (model builder)를 활용하였다. 특히 객체 간 매칭 단계에서는 교차(intersect), 공간결합(spatial join) 등의 기능들을 조합하여 적용하였다. 이러한 매칭 기반 갱신 프로세스를 테스트 데이터셋(건물수 1500여개)에 적용하였을 때, 일반 PC(CPU: Intel Core i5, RAM: 8GB)에서 총 처리시간이 수분이내로 측정되었다.
매칭 쌍 탐색 과정에서 1:n과 n:1 매칭의 경우는 매칭 케이스 중 통합과 분리 케이스에, 1:0, 0:1 매칭의 경우에는 삭제와 추가 케이스에 해당하며, 탐색된 매칭 쌍을 바탕으로 앞에서 제안한 갱신 케이스에 따라 도형정보 갱신을 수행한 결과는 Table 5 와 같다.
Updating results of the digital topographic map by shape updating cases
PPT Slide
Lager Image
Updating results of the digital topographic map by shape updating cases
Fig. 4 는 건물 객체 통합 케이스의 예시이고, Fig. 5 는 건물 객체 분리 케이스의 예시를 나타낸다.
PPT Slide
Lager Image
The example of integration of building objects(dark object is on the digital topographic map; bright object is on the KAIS map)
PPT Slide
Lager Image
The example of division of building objects(dark object is on the digital topographic map; bright object is on the KAIS map)
위에서 분류한 갱신 케이스를 기준으로 갱신을 수행할 때 건물용도 코드를 이용하여 속성 정보를 갱신한 결과는 Table 6 과 같다.
Updating result of the digital topographic map by attribute updating cases
PPT Slide
Lager Image
Updating result of the digital topographic map by attribute updating cases
도로명 주소 전자지도 건물 데이터를 이용하여 수치지도 건물 데이터 갱신을 수행한 결과 도형정보가 거의 유사하여 도형정보 갱신이 필요 없는 객체는 약 17.9%(279개)를 차지하였으며, 반대로 신축이나 증축, 삭제 등의 변화로 인해 도형정보 갱신이 필요한 객체는 82.1%(1280개)에 해당하였다. 신축되어 추가된 건물 객체는 7개였으나, 삭제된 건물 객체는 약 26%에 해당하는 411개였다. 이는 테스트지역이 재개발 단지를 포함하는 지역이라 많은 건물이 재건축을 위해 현재 없어진 상태이기 때문으로 보인다.
속성정보 갱신의 경우에는 약 65%(1021개)에 해당하는 건물 객체의 정보가 변하지 않았으며, 이 중에는 도형정보 갱신이 필요 없는 279개의 건물 객체를 포함하고 있었다. 즉, 34.5%(528개)의 건물 객체가 속성정보 갱신 대상임을 확인할 수 있었고, 이들 건물 객체들은 생성, 폐지, 변경 등의 변화가 있었음을 확인하였다.
전수 조사 기법에 의해 갱신을 수행할 경우, 1550개의 건물객체를 모두 새로운 건물로 대체하고 신규 속성 정보를 입력해야 하나, 제안 프로세스를 적용하여 갱신을 수행하는 경우에는, 도형정보와 속성정보가 모두 변화가 없는 279개의 객체(17.9%)를 제외하고 나머지 객체에 대해서만 갱신 작업이 수행되었다. 또한 전체 건물 객체의 47.6%(742개)는 속성정보에 변동 사항이 없어 도형정보만 갱신이 필요한 객체로 분류되어 부분적 갱신이 가능하였다.
즉, 제안한 프로세스에 따라 갱신을 수행할 경우, 도형정보 및 속성정보의 갱신이 필요한 객체만 선별하여 갱신하기 때문에, 전수 조사에 의해 전체 건물을 갱신하는 것에 비해 작업효율성을 높일 수 있음을 확인하였다.
Fig. 6 은 갱신 전 수치지도 건물 레이어와 도로명주소 전자지도 건물 레이어를 중첩한 결과를, Fig. 7 은 최종적으로 갱신 케이스 분류에 따른 도형정보 갱신과 속성정보 갱신을 수행한 결과를 나타낸다.
PPT Slide
Lager Image
Overlay of digital topographic map and KAIS map before updating(white objects represent buildings on the digital topographic map, gray objects represent buildings on the KAIS map)
PPT Slide
Lager Image
Updating result of building layer of the digital topographic map
5. 결 론
본 연구에서는 수치지도 건물 데이터에 대하여 최신 변경정보를 반영하기 위해 도로명주소 전자지도 건물 데이터를 중첩하여 각 건물 객체 간 매칭쌍을 탐색하고, 그 결과를 바탕으로 갱신 케이스를 분류하여 갱신을 수행하는 일련의 건물 데이터 갱신 프로세스를 제안하고 적용하였다.
갱신 대상 데이터인 수치지도 건물 데이터와 갱신 참조 데이터인 도로명주소 전자지도 건물 데이터 간의 중복된 면적을 이용하여 중첩 면적비를 계산하고, 이를 기준으로 매칭 쌍탐색 및 갱신을 위한 케이스를 분류하였다. 매칭 케이스는 총 8가지로 각각 유지, 통합, 분리, 추가, 삭제, 확장, 축소, 변경에 해당하며, 갱신 케이스의 경우는 도형정보 및 속성정보 유지, 도형정보 수정 및 속성정보 수정, 기존 객체 삭제, 신규 객체추가로 분류하였다.
갱신 과정에서 각 건물 객체가 도형정보 및 속성정보 갱신에 대한 정보를 포함하는 갱신 이력 코드를 자동으로 부여하게 함으로써 특정 건물의 변동 이력을 확인하기에 유용한 정보를 생성할 수 있었으며, 이러한 갱신 이력 코드는 도형정보 갱신 케이스와 속성정보 갱신 케이스 번호의 2자리 수로 나타내었다.
서울시 관악구 지역을 대상으로 하여 본 연구의 갱신 프로세스를 적용한 결과, 전체 건물 객체 중 82.1%의 객체가 도형 정보 갱신 대상으로 분류되었으며, 34.5%의 객체가 속성정보 갱신 대상으로 분류되었다. 따라서 본 연구에서 제안한 건물 데이터 갱신 기법을 통해, 최소 17.9% 정도의 객체는 갱신을 수행하지 않았으므로, 전수조사에 의해 전체 건물 객체를 갱신하는 방법에 비해 갱신 효율성이 향상된 것으로 판단된다. 즉, 본 연구에서 제안한 방법에 의한 건물 데이터 갱신 수행 결과, 갱신 케이스 분류를 통해 부분 갱신 및 수시 갱신이 가능하여 전수조사에 비해 갱신 작업의 효율성이 향상되었음을 확인할 수 있었다. 또한 실세계 건물의 변동 사항을 반영하는 갱신 이력 코드를 자동으로 생성하였고, 이는 향후 건물의 변화를 추적하는 데 유용하게 사용할 것으로 기대된다.
건물객체 매칭 알고리듬의 고도화 및 갱신 케이스 분류식의 고도화를 통해 갱신의 효율성과 분류 정확성을 향상시키는 부분은 향후 해결해야 할 과제이다. 또한 본 연구에서 속성정보 갱신에 사용된 건물 용도 코드의 경우, 도로명주소 전자지도의 건물 용도 코드가 수치지도에 비해 더 구체적이고 최신의 정보를 포함하고 있기 때문에, 단순히 수치지도의 기존건물 용도의 변동 사항만 갱신하는 것이 아니라 도로명주소 전자지도의 건물 용도 정보와 융합하여 더 세분화 된 용도 코드로 갱신하는 방안에 대한 연구가 보완되어야 할 것이며, 건물용도 정보뿐만 아니라 보다 다양한 속성필드를 활용한 갱신 프로세스 정립에 대한 연구가 수행되어야 할 것이다.
Acknowledgements
본 연구는 국토교통부 도시건축 연구개발사업의 연구비지원(11첨단도시G10)에 의해 수행되었습니다.
References
Briat M. , Monnot J. , Kressmann T. 2005 Incremental update of cartographic data in a versioned environment ICA A Coruña, Spain Proceedings of 22nd International Cartographic Conference 11-16 July
Cho W. , Choi B. , Lee C. 1996 A Study on Digital Map Quality Improvement, Report 97-2 Korea Research Institute for Human Settlements Korea 16 - 17
Kim H. , Yang S. , Ga C. , Yu K. 2008 A Method of Update and Inspection for Building Layer of Digital Maps 2.0 using e-AIS Data Proceedings of the Korean Association of Geographic Inforamtion Studies Conference 427 - 433
Kim J. , Yu K. 2012 Automatic detection of the updating object by areal feature matching based on shape similarity Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 30 (1) 59 - 65
Kim K. , Huh Y. , Yu K. 2010 A study on method of linking with navigation map and new address map for updating navigation map buildings Proceedings of 2010 Conference of Korea Society of Surveying, Geodesy, Photogrammetry and Cartography Gyeongsang-do, Korea 22-23 April 23 - 25
Kim W. , Lee K. , Park H. 2000 Update/revision of digital map by using the drawing of work completion surveying Journal of the Korean Society for Geospatial Information System 8 (1) 85 - 95
Lee J. , Lee D. , Jung S. 2008 Development of digital map on-demand updating system Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 26 (5) 537 - 546
Matikainen L. , Hyyppa J. , Ahokas E. , Markelin L. , Kaartinen H. 2010 Automatic detection of buildings and changes in buildings for updating of maps Journal of Remote Sensing 2 1217 - 1248
Qi H. B. , Li Z. L. , Chen J. 2010 Automated change detection for updating settlements at smaller-scale maps from updated larger-scale maps Journal of Spatial Science 55 (1) 133 - 146
Yang S. 2009 History database construction for digital map updating system using as-built drawings The Journal of GIS Association of Korea 17 (2) 183 - 189
Yang S. , Choi J. , Yu K. 2009 Development of the digital map updating system using CAD object extracted from as-built drawings Journal of the Korean Society for Geospatial Information System 17 (3) 13 - 21