Advanced
A Simplified Li-ion Battery SOC Estimating Method
A Simplified Li-ion Battery SOC Estimating Method
Transactions on Electrical and Electronic Materials. 2016. Feb, 17(1): 13-17
Copyright © 2016, The Korean Institute of Electrical and Electronic Material Engineers
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : October 10, 2015
  • Accepted : December 12, 2015
  • Published : February 25, 2016
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Xiaoqiang Zhang
zxq@ncut.edu.cn
Xiaocheng Wang
Weiping Zhang
Geyang Lei
Abstract
The ampere-hour integral method and the open circuit voltage method are integrated via the extended Kalman filter method so as to overcome insufficiencies of the ampere-hour integral method and the open circuit voltage method for estimating battery SOC. The process noise covariance and the measurement noise covariance of the extended Kalman filter method are simplified based on the Thevenin equivalent circuit model, with a proposed simplified SOC estimating method. Verification of DST experiments indicated that the battery SOC estimating method is simple and feasible, and the estimated SOC error is no larger than 2%.
Keywords
1. INTRODUCTION
SOC (state of charge) is used to indicate the remaining power of a battery and is one of the most important parameters in battery applications. An accurate SOC estimation can help prevent excessive charge or discharge of a battery, thus battery safety can be ensured; it can also be used as the control parameter to provide the optimal performance of the battery system. Several commonly adopted battery SOC estimating methods have been introduced, among which, the ampere-hour integral method is most commonly adopted due to simplicity and reliability; but there can also be problems such as the initial value and the cumulative errors [1] . Such problems can be avoided when the open circuit voltage method is adopted, but a long standing time is required to measure the open circuit voltage, which hinders its convenient application. The relationship between SOC and the voltage and current at the charging, discharging and static states, have been deduced [2] ; the initial value of the SOC estimation can be calculated, then the improved ampere-hour integral method is used to estimate SOC and have it corrected at a fully discharged state. However, such correction at a fully discharged state does not completely overcome the accumulative error caused by the ampere-hour integral method. The ampere-hour integral method and the open circuit voltage method are integrated via the extended Kalman filter method based on the proposed simplified equivalent circuit model; and the measurement noise covariance error is adjusted through the measurement noise model to correct the SOC estimation continuously [3] .
The Thevenin equivalent circuit battery model [4] is used in this article to estimate battery SOC based on the extended Kalman filter method. A method to simplify the process noise covariance and measurement noise covariance is proposed to facilitate application of the extended Kalman filter method. Finally, the battery SOC estimation method is verified through the DST driving cycle experiments [5] . The batteries used in the experiments are Model JD125210265F polymer Li-ion batteries produced by the Globe Super Power New Energy Technology Development Corp. with nominal voltage of 3.2 V and nominal capacity of 50 Ah [8] .
2. BATTERY MODEL
The battery equivalent circuit model is widely used to estimate battery SOC and the Thevenin battery model is selected as the Li-ion battery model. Experimental data from the designed parameter identification experiments of the Thevenin battery model are used as the basis for deducting the Thevenin battery model parameters at corresponding testing points through the multivariate linear regression analysis in imitation of Partnership for a New Generation Of Vehicles (PNGV) [9] battery model parameter identification method; and the effectiveness of this estimation method is verified via the Dynamic Stress Test (DST) experiments. PNGV battery model is used as a standard battery model to the test model in ‘PNGV Battery Test Manual’ published in February 2001.
- 2.1 Thevenin equivalent circuit battery model
In this study, the Thevenin equivalent circuit battery model is adopted to acquire the process model and the measurement model of the extended Kalman filter, as shown in Fig. 1 .
PPT Slide
Lager Image
Thevenin equivalent circuit battery model.
Where ideal voltage source OCV represents the open circuit voltage of the battery; resistance R O is the battery's ohmic internal resistance; resistance R P is its polarization internal resistance; capacitor C is the shunt capacitor of R P ; I L is the battery's load current; I P is its polarization current; and V L is its terminal voltage. This model is a lumped parameter equivalent circuit, which can be used to predict the linearity of the battery terminal voltage. The mathematical expression of V L is as follows
PPT Slide
Lager Image
- 2.2 Mathematical relationship of thevenin battery model
Based on the Thevenin equivalent circuit battery model, battery SOC and polarization voltage V P are the state variables, terminal current I L is the input variable and terminal voltage V L is the output variable, with which the discrete state equation of Thevenin battery model is:
PPT Slide
Lager Image
PPT Slide
Lager Image
i.e.,
PPT Slide
Lager Image
Where sampling time interval Δ t = t k t k−1 , battery nominal capacity Q rated = 50 Ah.
Meanwhile, the obtained discrete state equation of the Thevenin battery model is:
PPT Slide
Lager Image
OCV is the piecewise linear function of , i.e.,
PPT Slide
Lager Image
Where a k and b k can be obtained from OCV and SOC of the parameter identification experiment.
- 2.3 Thevenin battery model parameter identification
The Thevenin battery model parameter identification experiments are designed in accordance with the proposed method i.e., the quantified HPPC (Hybrid Pulse Power Characterization) test [6] . Based on the experimental data, the Thevenin battery model parameters at corresponding testing points are obtained through the multivariate linear regression analysis in imitation of PNGV battery model parameter identification method. Model parameters when SOC = 61% are shown in Table1 . Meanwhile, the OCV-SOC curve of the battery is also deduced, as shown in Fig. 2 .
Model parameters when SOC=61%.
PPT Slide
Lager Image
Model parameters when SOC=61%.
PPT Slide
Lager Image
Battery OCV-SOC curve.
3. SOC ESTIMATION
- 3.1 Extended Kalman filter
The Kalman filter is widely applied in estimations, but is only suitable for those linear models. The Thevenin equivalent circuit battery model is a nonlinear model; therefore, the extended Kalman filter is used in this article to estimate battery SOC.
The process model and the measurement model of the extended Kalman filter respectively, are:
PPT Slide
Lager Image
PPT Slide
Lager Image
Where and are the process noise and the measure noise, w k ~ N (0, Q k ), v k ~ N (0, R k ), respectively.
Based on the mathematical relationship of the Thevenin battery model,
PPT Slide
Lager Image
PPT Slide
Lager Image
Where
PPT Slide
Lager Image
The time update equation of the extended Kalman filter is:
PPT Slide
Lager Image
PPT Slide
Lager Image
The state update equation of the extended Kalman filter is:
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
where,
PPT Slide
Lager Image
, and
PPT Slide
Lager Image
.
The working flow of the extended Kalman filter is shown in Fig. 3 . First, the initial state and initial estimation error covariance are to be determined. Second, the state estimation and estimation error covariance are calculated based on equations (11) and (12). Then, the input and measurement values are input, as well as the process noise covariance and the measurement noise covariance; the Kalman gain is calculated based on equation (13); the state estimation and the estimation error covariance are corrected based on equations (14) and (15). Finally, a cycle is to be formed with the prediction and the correction, and the extended Kalman filter is to work continuously following this cycle.
PPT Slide
Lager Image
Working flow of the extended Kalman filter.
- 3.2 Simplification of process noise covariance and measurement noise covariance
Since it is difficult to acquire precise process noise covariance and measurement noise covariance, the previously proposed method [7] is imitated to reach the following conclusions through significant number of experiments and simulations.
  • 1. The larger the measurement noise covarianceRk, the slower the convergence of the filter, and smoother the filtration; the smaller the measurement noise covarianceRk, the faster the convergence of the filter, and more drastic the oscillation of the filtration.
  • 2. The smaller the process noise covarianceQk, the smaller the filtration error, and better the filter performance.
  • 3. When the process noise covarianceQkis at a very small value andQkis 0, the filtration effect can hardly be any different.
Based on the above conclusions, the way to simplify the process noise covariance and the measurement noise covariance is as follows:
  • (1) SetQk= 0, so as to achieve better filtering effect.
  • (2) Before the first jump of the current, setRk= 10−6, to maximize converging speed of the filter; then setRk= 1, to make the filtration smoother.
- 3.3 Initial parameters of the extended Kalman filter
Assuming that the battery starts at a static state, the initial estimation of V p is 0. The initial estimation of SOC is set at 0 convenience. Therefore, the initial state estimation of the extended Kalman filter is
PPT Slide
Lager Image
As the battery is at a static state, the initial value of V p is 0; therefore, the initial estimation error variance of V p is 0. As the initial value of SOC cannot be determined, the initial estimation error variance of SOC is set at 1 Experiments have indicated that: selection of the value is not critical, with nearly any value other than 0 causing the filter to eventually converge [7] . Therefore, the initial estimation error variance of the extended Kalman filter is
PPT Slide
Lager Image
4. VERIFICATION THROUGH EXPERIMENTS
The DST (dynamic stress test) cycle used in this study, is designed based on the DST driving cycle and battery characteristics to verify the proposed battery SOC estimation method, as shown in Fig. 4 . The DST cycle is used to generate the predicted value and measured value of the battery terminal voltage, as shown in Fig. 5 ; furthermore, the measurement difference (between the measured value and the predicted value) is shown in Fig. 6 . The SOC obtained via the discharge test is used as a reference in this article to obtain the SOC estimation error. Meanwhile, only the SOC obtained through the discharge test after the DST cycle is used as a reference for convenience, and other SOC references are then obtained through the ampere-hour integral method. The battery SOC estimated values and reference values are shown in Fig. 7 ; the estimation errors (differences between estimated values and reference values) are shown in Fig. 8 , from which it is apparent that the estimated SOC error is less than 2% and hence, of practical significance.
PPT Slide
Lager Image
DST driving cycle.
PPT Slide
Lager Image
Predicted value and measured value of battery terminal voltage.
PPT Slide
Lager Image
Measurement difference of battery terminal voltage.
PPT Slide
Lager Image
Battery SOC estimated value and reference value.
PPT Slide
Lager Image
Battery SOC estimation error.
5. SUMMARY
In this study, a simplified battery SOC estimation method is proposed based on the utilization of the Thevenin equivalent circuit battery model and the extended Kalman filter. The extended Kalman filter method is made easy to apply via simplifying the process noise covariance and the measurement noise covariance of the extended Kalman filter. Since it is difficult to acquire precise process noise covariance and measurement noise covariance, several experiments and simulations are required to reach practical conclusions. These conclusions can help deal with measurement noise covariance and process noise covariance. Subsequently, the DST cycle experiments are conducted to verify accuracy of the proposed SOC estimation, where the estimated SOC error is no larger than 2%.
Acknowledgements
This work was supported by Natural Science Foundation of China (N0. 51277004) and The Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (NO.IDHT20130501).
References
Lin C. , Wang J. , Chen Q. (2004) Battery 34 376 -
Ng K. S. , Moo C. S. , Chen Y. P. , Hsieh Y. C. (2009) Applied Energy 86 1506 -
Lee J. M. , Nam O. Y. , Cho B. H. (2007) Journal of Power Sources 174 9 -
Lin C. , Qiu B. , Chen Q. (2005) Chinese Journal of Mechanical Engineering 41 76 -
USABC and DOE National Laboratories Electric Vehicle Battery Test Procedures Manual [EB/OL] ()
2003 Freedom CAR Battery Test Manual for Power-Assist Hybrid Electric Vehicles [EB/OL] (.)
Welch G , Bishop G. 2006 An Introduction to the Kalman Filter [EB/OL] (.)
http://www.bjgsp.com/cn/index.php