Study on the Development of High-efficiency, Long-life LED Fog Lamps for the Used Car Market
Study on the Development of High-efficiency, Long-life LED Fog Lamps for the Used Car Market
Transactions on Electrical and Electronic Materials. 2014. Aug, 15(4): 201-206
Copyright © 2014, The Korean Institute of Electrical and Electronic Material Engineers
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : March 17, 2014
  • Accepted : June 02, 2014
  • Published : August 25, 2014
Export by style
Cited by
About the Authors
Sang Jun, Park
Young Lim, Lee

LED lighting,considered to be a new growth industry, has attracted a great deal of attention due to its higher illumination and longer life time than existing light sources. In this study, high-efficiency and long-life LED fog lamps for automobiles were developed, which can substitute the existing 27 W halogen fog lamps for a used car market. For this purpose, the number of LED modules, the body, heat sink, and the output of the fog lamp were first optimized through a numerical analysis. Then, a 10 W-class LED fog lamp was prototyped based on the optimized numerical model, and the performance of the fog lamp was successfully verified through the experiments.
LED lighting is considered to be a growth industry and this can be regarded as an important factor for solving the environment and energy problems according to the global policy. It has higher illumination, longer life, and higher energy efficiency than other light sources such as halogen bulbs and high intensity discharge(HID) lamps, etc. Table 1 shows the characteristics of light sources, and an LED lamp has excellent life and light efficiency in comparison with a halogen lamp or an HID lamp. In addition, the LED lamp consumes about half of the HID lamp power.
Characteristics of lights.
PPT Slide
Lager Image
Characteristics of lights.
For automotive fog lamps, a 27 W-halogen lamp is generally used, and it is known that the power consumption can be reduced to as low as 10 W if using an LED lamp. While the life time is about 2,000 hours for halogen lamps, this can be extended to about 50,000 hours for LED lamps.
In summary, LED lamps have many advantages such as lower power consumption, longer life, higher color efficiency, no ultraviolet and infrared emission, and stronger durability against vibration and impact. However, LED lamps need to be thermally well managed to ensure their normal operation. In particular, high-power LED accelerates the decomposition between the parts due to phenomena such as the light efficiency reduction of the light beam, the reduction of the forward voltage, and the increase of the fundamental wavelength of the emitted light due to the heat occurring in the junction during operating; accordingly, the LED lifespan is reduced [1 , 2] . For LED lights, if the junction temperature reaches 135~150℃, the chip can become disconnected. Also, problems such as color-temperature variation and the reduction of the lifespan of LED can occur. A high-efficiency heat sink that can lower the temperature of the junction is therefore required [3] .
Among LED heat sinks, the plate-fin heat sink [4 , 5] has typically been used because it does not require a high cost. Also, a heat pipe [6] is used for high-power LED lights due to its high heat transfer rate. In addition, many advanced cooling technologies that can greatly decrease high-power LED junction temperature are being studied. As shown in Fig. 1 , the soldering method is used to remove the thermal resistance between the LED module and the aluminum body. The micro jet array cooling system has also been suggested [7 , 9] , and similar cooling methods such as the use of a synthetic jet [10 , 11] , a micro channel cooler [12] , thermoelectric cooling [13] , and a piezoelectric fan [14] , etc. have been studied.
PPT Slide
Lager Image
Schematic of a 1-dimensional thermal resistance model.
In order to increase the efficiency of LED lamps, Kim et al. [15] compared the performance of an LED lamp with and without heat pipes. In addition, Liu et al. [16] studied forced cooling technology using a micro jet, and reported that the junction temperature of LED could be further reduced by 23℃. Chen et al. [17] reported the effect of the contact resistance for LED with a metal core printed circuit board(MCPCB) through numerical analysis and experiment. Kang et al. [18] manufactured a heat sink for LED headlamps and studied the performances of cooling and illumination intensity by varying the fin-base area and fin length. Weng [19] numerically studied the relationship between thermal resistance and junction temperature under various conditions such as the material properties of the printed circuit board (PCB), the cooling condition, and chip size with a power of 0.1~1 W. He identified interactions between parameters and suggested a thermal design rule for the development of LED lights. Hwang, et al. [20 , 21] predicted the variation of junction temperature according to the fin shape, PCB material properties, and the number of LED modules for a 10 W LED light. They showed that the life time of a fan could be extended up to 164.5% by on-off control of the fan.
The lighting systems of some automobiles have already been replaced with LED lighting since it has high efficiency and long life. However, an LED lamp that can replace a halogen bulb of a used car has not yet been developed. Therefore, in this study, a high-efficiency and long-life LED fog lamp for a used-car market has been developed by optimizing thermal performance. First, to optimize the thermal performance of the LED fog lamp, the number of LED modules and the properties of the body, heat sink, and power were optimized. A prototype of a 10 W LED fog lamp was then manufactured and its thermal performance and illumination intensity were successfully verified from experiments.
- 2.1 Numerical analysis
Thermal analysis was conducted to predict the junction temperature of an LED fog lamp. A steady-state thermal analysis module in Ansys [22] was adopted and, for the material properties and boundary conditions, the LED chip is assumed to be silicon, the lens is silicone, and the body and PCB are both aluminum.
The heat conversion rate of LED power is about 70%. Furthermore, it is assumed that the outside air temperature was 25℃, the convective heat transfer coefficient is 2 W/m 2 K, the thermal resistance, and θj-s is 2℃ /W. An LED chip was modeled as a heat source for simplification of the grid and reduction of the analysis time in the numerical analysis. Figure 2 shows a schematic of the numerical model, and Fig. 3 shows the specification of the numerical analysis model.
PPT Slide
Lager Image
Schematic for components of the numerical model.
PPT Slide
Lager Image
Specifications of the numerical model.
The number of LED modules plays an important role in decreasing the junction temperature due to the effect of power dispersion. Thus, in order to optimize the number of LED modules, the number of LED modules was increased from 1 to 6 as shown in Fig. 4. In addition, the LED thermal performance according to the shape of the heat sink was investigated, and the platefin heatsink and the radial-fin heatsink are shown in Fig. 5. The thermal performance was optimized by varying the fin number of the heatsink from 4 to16, as shown in Fig. 6. Table 2 shows a summary of the numerical analysis models considered in this study. Catia [23] was used for the three-dimensional shape design.
PPT Slide
Lager Image
Numerical models with the different numbers of LED modules (a) model 1, (b) model 2, (c) model 3, (d) model 4, (e) model 5, and (f) model 6.
PPT Slide
Lager Image
Numerical models with the different shapes of heatsink fins (a) model 7 and (b) model 8.
PPT Slide
Lager Image
Numerical models with the different numbers of heatsink fins (a) model 9, (b) model 10, and (c) model 11.
Summary of numerical models with model number.
PPT Slide
Lager Image
Summary of numerical models with model number.
- 2.2 Experimental method
Figure 7 shows a schematic diagram of the heat radiation experiment. The thermal performance of an LED fog lamp was verified by applying power from 8 W to 12 W using a power supply. A T-type thermocouple was used to measure the temperature, and the data was obtained by using a recorder. The junction temperature (T j ) of the LED fog lamp was not directly measured but was calculated by using the solder point temperature (T sp ) and thermal resistance (θ j-sp ) given by the manufacturer. The relationship between Tj and Tsp is as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
Schematic diagram of heat radiation experiment.
When measuring the solder point temperature, the effect of radiation was minimized by wrapping the thermocouple with a radiation shield tape. The thermal equilibrium of the LED fog lamp was reached within 40 minutes after the LED light was turned on.
- 3.1 Junction temperature according to the number of LED modules
The case of LED modules mounted on the aluminum body without the heatsink was first considered. The junction temperature was numerically predicted by varying the number of LEDs, and the result is shown in Fig. 8. In the case of model 1,where a single LED module of high power is mounted, the junction temperature was as high as about 359℃. The target junction temperature should be below 100℃. When the number of modules increases with low-power chips, the junction temperature exponentially decreases, but the rate of decrease is gradually reduced. For model 6, where six LED modules are used, the junction temperature reaches about 257℃, showing a temperature decrease of 102℃ compared to model 1. Therefore, using multiple lowpower chips is more favorable for reducing junction temperature than using a single high-power LED due to the thermal dispersion effect. In general, phenomena such as chip disconnection, color temperature variation, and sudden life-shortening occur if the LED junction temperature reaches higher than 135~150℃. Thus, since the
PPT Slide
Lager Image
Variation of junction temperature with the number of LED modules.
Thermal management with the aluminum body alone is not sufficient, an additional thermal device such as a heat sink becomes necessary.
- 3.2 Junction temperature according to the fin shape of the heat sink
In this study, two types of heat sinks mounted on the aluminum body are considered to further improve the thermal performance of the LED light: the plate-fin type and the radial-fin type. Since the heat sink is assumed to be attached to the body by a soldering process, additional thermal contact resistance was not included. Figure 9 shows the variation of LED junction temperature with the shape of the heat sink. It was assumed that each heat sink has twelve fins. The junction temperature of model 7(the plate-fin type), is found to be about 140℃, and the junction temperature of model 8(the radial-fin type), is about 99℃. Thus, it can be seen that the radial-fin type is considerably more efficient in thermal management. This is mainly because the surface area of the radial-fin type is about 2.4 times larger than that of the plate-fin type. Although the junction temperature is below 100℃ for the radial-fin type, it can be further lowered by optimizing the number of radial fins.
PPT Slide
Lager Image
Variation of junction temperature with the shape of heatsink fins.
- 3.3 Junction temperature according to the number of radial fins and amount of input power
Figure 10 shows the variation of the LED junction temperature with the number of radial fins. The junction temperature of model 6 without a heat sink is 257℃. When the heat sink with four fins is mounted, the junction temperature lowers to about 149℃. This was expected since the surface area for heat release increases with the number of fins. The junction temperature of model 11 that has 16 fins decreased to about 87℃, and this corresponds to about a 42% decrease in the junction temperature compared to model 8. The ambient temperature of a car fog lamp can increase up to 45℃ in some places, such as in middleeastern countries. In this case, the junction temperature can increase from 87℃ to 107℃. However, it is still lower than 120℃, which is the maximum allowable junction temperature recommended by the manufacturer. Thus, if 6 LED modules and a heat sink with 16 radial fins are used, the thermal performance of a 10 W LED fog lamp can be sufficiently secured.
PPT Slide
Lager Image
Variation of temperature at junction and heatsink fin according to the number of heatsink fins.
Figure 11 shows the contour plot of the surface temperature of model 11. While the LED junction temperature is 87℃, the temperatures of the body and heat sink are 67℃ and 64℃, respectively. Although there is a difference between the junction temperature and heat sink temperature, the tendency of temperature variation with the number of fins is similar.
PPT Slide
Lager Image
Contour of temperature for an LED fog lamp with 10 W.
Currently, the power of commercial LED fog lamps ranges from 7.5 to 12 W. Thus, the variation of junction temperature with LED input power was studied. Figure 12 shows a variation of the junction temperature of model 11withinputpower. The junction temperature is linearly proportional to the input power. The junction temperature is 75℃ at 8 W of input power, whereas if the input power is increased to 12 W, the junction temperature increases to 99℃.For an ambient temperature of 45℃, the junction temperature becomes 119℃, which is still lower than the maximum allowable temperature of 120℃. This suggests that a 12 W LED fog lamp can be developed with 6 LED modules and 16 radial fins without any thermal problems.
PPT Slide
Lager Image
Variation of junction temperature with input power at ambient temperature, 25℃.
- 3.4 Experiments on the thermal performance of an LED fog lamp prototype
The prototype of the LED fog lamp was manufactured based on model 11, as shown in Fig. 13. Model 11 has an aluminum body with 6 LED modules and a heat sink with 16 radial fins. First, the variation of the junction temperature with input power was measured as shown in Fig. 14 , where input power varies as 8 W, 10 W, and 12 W. The junction temperature was calculated from the measured temperature of the soldering point with the thermal resistance supplied by the manufacturer. At 8 W, the soldering point temperature was measured as 62.0℃, and the corresponding junction temperature was 78.0℃. As the input power gradually increases, the junction temperature also linearly increases with the power. At 10 W, the junction temperature reached 85.8℃ and increased to 94.6℃ at 12 W. Therefore, it is confirmed that the LED fog lamp developed in this study can be used with up to 12 W of input power. The illumination variation of the LED fog lamp with input power was also investigated. The intensity of illumination was measured at the distant point of 20 cm, perpendicular to the LED lens. The intensity of illumination was measured as 2,688, 3,181, and 3,610 lux for 8, 10, and 12 W, respectively. The typical illumination intensity of a 27 W halogen fog lamp is 1,010 lux, so the intensity of a 12 W LED lamp is 357% greater than that of a halogen lamp.
PPT Slide
Lager Image
Prototype of the LED fog lamp.
PPT Slide
Lager Image
Variation of junction temperature with power of the LED fog lamp.
In this study, the properties of the LED module, the body, heat sink, and power of an LED fog lamp were optimized in order to develop an LED fog lamp that can replace halogen fog lamps in used cars. In addition, the performance of the fog lamp was verified with a prototype of the LED fog lamp. The conclusions drawn from this study are as follows:
  • (1) Multiple low-power LED’s are more advantageous in reducing the junction temperature of a fog lamp in comparison with a single high-power LED. The junction temperature with6 LED modules can be greatly reduced by 105℃ compared to a single LED module.
This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) with financial resource granted from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20134030200230).
Todorov D. G. , Kapisazov L. G. 2008 Proc. Electronics 139 -
Fan J. , Yung K.C. , Pecht M. 2011 Device and Materials Reliability IEEE Trans. 11 407 -
Hu J. , Yang L. , Shin M. W. 2008 J. Phys. D: Appl. Phys. 41 35 -
Luo X. B. , Xiong W. , Cheng T. , Liu S. 2009 IET Optoelectron. 3 225 -    DOI : 10.1049/iet-opt.2008.0068
Christensen A. , Ha M. , Graham S. 2007 7th International Conference on Solid State Lighting 6669 -
Kim L. , Choi J.H. , Jang S. H. , Shin M. W. 2006 6th Symposium of the Korean Society of Thermophysical Properties 455 21 -
Liu S. , Yang J. H. , Gan Z. Y. , Luo X. B. 2008 Int. J. Therm. Sci. 47 1086 -    DOI : 10.1016/j.ijthermalsci.2007.09.005
Luo X . B. , Chen W. , Sun R. X. , Liu S. 2008 Heat Transf. Eng. 29 774 -    DOI : 10.1080/01457630802053777
Luo X. B. , Liu S. 2007 IEEE Trans. Adv. Packag. 30 475 -    DOI : 10.1109/TADVP.2007.898522
Arik M. 2007 Appl. Thermal Eng. 27 1483 -    DOI : 10.1016/j.applthermaleng.2006.09.027
Song B. M. , Han B. , Bar-Cohen A. , Sharma R. , Arik M. 2010 IEEE Trans. Compon. Packag. Technol. 33 728 -    DOI : 10.1109/TCAPT.2010.2051034
Yuan L. L. , Liu S. , Chen M. X. , Luo X. B. 2006 Proc. of 7th International Conference on Electronics Packaging Technology 1-5 26 - 29
Chen J. H. , Liu C. K. , Chao Y. L. , Tain R. M. 2005 Proc. of 24th International Conference on Thermoelectrics (ICT) 53-56 19 - 23
Acikalin T. , Garimella S. V. , Petroski J. , Raman A. 2004 Proc. of 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 1 663 - 671    DOI : 10.1109/ITHERM.2004.1319239
Kim L. , Choi J. H. , Shin M. W. 2007 Thermochimica Acta 455 21 -    DOI : 10.1016/j.tca.2006.11.031
Liu S. , Yang J. , Gan Z , Luo X. 2008 International Journal of Thermal Sciences 47 1086 -    DOI : 10.1016/j.ijthermalsci.2007.09.005
Chen H. , Lu Y. , Gao Y. , Zhang H. , Chen Z. 2009 Thermochimica Acta 488 33 -    DOI : 10.1016/j.tca.2008.12.019
Kang B. D. , Kang H. W. , Kang H. W. 2007 KASE 7 1147 -
Weng C. J. 2009 International Communications in Heat and Mass Transfer 36 245 -    DOI : 10.1016/j.icheatmasstransfer.2008.11.015
Hwang S. H. , Park S. J. , Lee Y. L. 2010 Journal of KAIS 7 2317 -
Hwang S. H. , Lee Y. L. 2011 Journal of KSME 35 569 -
2005 Ansys, Version 12.1
2006 Catia, V5R17, Dassault Systems