Advanced
Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor–Current–Feedback Active Damping
Simplified Controller Design Method for Digitally Controlled LCL-Type PWM Converter with Multi-resonant Quasi-PR Controller and Capacitor–Current–Feedback Active Damping
Journal of Power Electronics. 2014. Nov, 14(6): 1322-1333
Copyright © 2014, The Korean Institute Of Power Electronics
  • Received : March 29, 2014
  • Accepted : July 24, 2014
  • Published : November 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Yongcan Lyu
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China
yongcan.lv85@gmail.com
Hua Lin
State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, China

Abstract
To track the sinusoidal current under stationary frame and suppress the effects of low-order grid harmonics, the multi-resonant quasi-proportional plus resonant (PR) controller has been extensively used for digitally controlled LCL-type pulse-width modulation (PWM) converters with capacitor–current–feedback active damping. However, designing the controller is difficult because of its high order and large number of parameters. Moreover, the computation and PWM delays of the digitally controlled system significantly affect damping performance. In this study, the delay effect is analyzed by using the Nyquist diagrams and the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance, that is, steady-state error and stability margin, identifies that different control parameters play different decisive roles in current loop performance. Based on the analysis, a simplified controller design method based on the system specifications is proposed. Following the method, two design examples are given, and the experimental results verify the practicability and feasibility of the proposed design method.
Keywords
I. INTRODUCTION
With the development of renewable energy and smart grid, energy storage systems (ESSs) have become increasingly interesting. ESSs could smooth the output power and decouple energy generation from demand [1] . As an interface between storage elements and the power grid, a voltage source pulse-width modulation (PWM) converter plays an important role in the single-stage and multistage power conversion systems (PCS) for ESSs [1] , [2] . To smooth the injected currents, the conventional L filter is replaced by the LCL filter because of its better harmonic attenuation ability [3] - [10] . However, given the resonance hazard of the LCL filter, damping solutions are required to stabilize the system.
Two main methods are used to dampen resonance, namely, passive damping and active damping. However, active damping is more well known than passive damping because no additional power loss occurs [3] - [10] . Among the various active damping solutions, capacitor–current–feedback active damping is selected in this study because of its effectiveness, simple implementation, and extensive application [6] - [10] . Capacitor–current–feedback active damping is equivalent to a virtual resistor connected in parallel with the filter capacitor [5] . This conclusion is drawn by excluding the delay effect.
However, computation and PWM delays occur in the digitally controlled system. The computation delay is the interval between the sampling instant and duty ratio update instant. The PWM delay is caused by the zero-order hold effect, which keeps the duty ratio constant after it has been updated [10] - [13] . Given the delay effect, the capacitor–current–feedback active damping is equivalent to a variable virtual impedance, which consists of a resistor connected in parallel with a reactor, rather than a virtual resistor. When the virtual resistor is negative, two unstable poles will be generated in the grid current loop [10] . As a result, the resonance peak should not be dampened to less than 0 dB to ensure system stability [8] . Thus, the capacitor–current–feedback gain should be selected with extreme caution.
In addition to system stability, high-quality injected power is another essential object in the control of the LCL-type PWM converter. Thus, the selection and design of the current controller is crucial. The stationary α–β frame is selected in this study to prevent the inconvenient decoupling in the synchronous d–q frame [6] . To track the sinusoidal current reference and suppress the selected low-order current harmonics, the proportional plus multifrequency resonant (multi-resonant proportional plus resonant [PR]) controller has been used extensively [14] - [19] . An ideal resonant controller can provide infinite gain to eliminate the steady-state error, but it occurs at the target frequency only. Any perturbation, such as frequency deviation, will lead to a significant reduction in the generated gain [18] . However, in fact, the grid frequency is allowed to deviate by ±0.5 Hz. Hence, the performance of the controller will be reduced, especially when applied to weak grids and microgrids where the frequency deviates even worse [20] . Moreover, attaining an ideal resonant controller is sometimes impossible because of finite precision in digital systems. To address these issues, the quasi-resonant controller is proposed [12] , [19] , [21] - [24] . The quasi-resonant controller can provide a sufficiently large gain around the target frequency to reduce its sensitivity to the grid frequency fluctuation and can be attained in digital platforms with a higher accuracy.
However, the design of the quasi-resonant controller, especially the multifrequency quasi-resonant controller (multi-resonant quasi-PR controller), is more difficult than that of the ideal resonant controller because the steady-state error should be taken into account in addition to stability and the stability margin. The design of a single quasi-PR controller is relatively easy and has been presented in [9] , [12] . In general, the single quasi-PR controller can be designed based on steady-state error, crossover frequency ( fcs ), phase margin (PM), and gain margin (GM) of the system, which have a significant effect on system performance and stability margin. However, these design methods are not applicable for the multi-resonant quasi-PR controller because calculating the PM of the controller is impossible because of its high order and large number of parameters. In [21] , a guideline on designing the multifrequency quasi-resonant controller (without the proportional controller) is presented, which considered grid frequency deviation, grid synchronization, grid impedance variation, and transient response. In [24] , pole placement is used to determine the controller parameters by properly selecting the poles to guarantee system stability and acceptable performance of the current loop. In [23] , the controller parameters are designed separately mainly based on the requirements of the steady-state errors and PM. However, these design methods are inconvenient for engineers, and previous studies do not focus considerable attention on capacitor–current–feedback active damping.
The effect of computation and PWM delays on the active damping performance is analyzed in detail by using Nyquist diagrams. The effect of the controller parameters on the current loop performance with the application of frequency response theory in the continuous domain is also investigated. Then, a simplified practical design method of the multi-resonant quasi-PR controller and capacitor–current–feedback coefficient is proposed in this study. The paper is organized as follows: In Section II, the average switching model (ASM) of the internal current loop considering the control delay is derived. Based on the derived ASM, the effect of the delay on the active damping performance, which influences the stability constraint condition of the current loop, is investigated by using the Nyquist stability criterion in Section III. In Section IV, the effect of the control parameters on system performance, that is, system stability constraint condition, steady-state error, and stability margin, are investigated. Based on the analysis, a simplified design method is proposed in Section V, and two design examples are conducted step by step by using the proposed method. In Section VI, the effectiveness of the proposed design method is verified by using the experimental results from a prototype of a three-phase LCL-type PWM converter. The conclusion is given in Section VII.
II. CONTROL STRATEGY AND MODEL OF THE LCL-TYPE PWM CONVERTER
Fig. 1 shows the configuration of a three-phase LCL-type grid-connected PWM converter in the stationary α–β frame. The LCL filter is composed of L 1 , C , and L 2 . Cdc is the direct current (DC) link capacitor. As the equivalent series resistors (ESRs) of L 1 , C , and L 2 can provide a certain degree of damping and help stabilize the system, the ESRs are omitted in this study to obtain the worst case.
PPT Slide
Lager Image
Topology and control strategy of a three-phase LCL-type PWM converter in the stationary α–β frame.
As an interface between storage elements and the power grid in two-stage PCS, the primary objective of the PWM converter is to exchange power with the grid by controlling the grid current i 2 directly. To directly control the battery charge–discharge and prolong its service time, the DC link voltage udc is also controlled by the PWM converter. As such, the d -axis current reference is generated by the outer DC voltage loop. Thus, the α -axis and β -axis current references
PPT Slide
Lager Image
are obtained by using the reverse Park transformation to the d -axis and q -axis current references
PPT Slide
Lager Image
To synchronize with the grid voltage ug , the phase angle of ug is detected through a decoupled double synchronous reference frame phase-locked loop [25] . The capacitor current iC serves as feedback to damp the LCL filter resonance actively, and K is the feedback coefficient. The capacitor–current–feedback signal is subtracted from the output of the current controller. Then, the capacitor–current–feedback signal is normalized with respect to udc /2 to obtain the modulation reference, which is fed to a digital PWM modulator.
As previously mentioned, computation and PWM delays occur in the digitally controlled system. The computation delay is one sampling period Ts in the synchronous sampling case when sampling is conducted at the beginning of a switching period. The calculated duty ratio is not updated until the next sampling instant. The PWM delay is definitely a half sampling period. Thus, the total delay is one and a half sampling periods (1.5 Ts ) [10] [13] . The single-phase equivalent ASM of the current loop for the converter in inverter mode is shown in Fig. 2 . We noted that the antialiasing filter could be removed in the synchronous sampling case [11] . Therefore, the grid current i 2 can be derived as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
Single-phase equivalent ASM of the current loop for the digitally controlled LCL-type PWM converter in inverter mode.
where T ( s ) is the loop gain of the system and is expressed as follows:
PPT Slide
Lager Image
and Gg ( s ) is expressed as follows:
PPT Slide
Lager Image
where
PPT Slide
Lager Image
is the resonance angular frequency of the LCL filter.
As shown in Eq. (1), the grid voltage low-order harmonics have a significant effect on the grid current i 2 . To suppress the effect of the low-order harmonics, the multi-resonant quasi-PR controller is employed. The transfer function is expressed as follows:
PPT Slide
Lager Image
where h can take the values 1, 3, 5, 7, …, m , with m being the highest current harmonic to be attenuated.
III. EFFECT OF THE COMPUTATION AND PWM DELAYS ON THE ACTIVE DAMPING PERFORMANCE
As shown in Fig. 2 , considering ug as the disturbance, the block diagram can be transformed into the standard dual-loop structure shown in Fig. 3 . The loop gain of the active damping loop Tic ( s ) can be derived as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
Standard dual-loop structure of the grid current loop with capacitor current active damping.
As shown in Fig. 3 , the grid current loop T ( s ) has no open-loop poles that lie in the right half plane (RHP), except for the active damping loop. That is to say, the number of RHP closed-loop poles of the active damping loop determines the number of RHP open-loop poles of T ( s ). In this study, the Nyquist diagram of Tic ( s ) is used to determine the number of RHP closed-loop poles by examining the magnitude at the negative real axis crossing frequency ωpc . Notably, the crossing points at high frequencies caused by the delay effect affect stability only slightly. As such, the conclusions obtained on the delay effect are summarized as follows. Similar results can be found in [10] .
  • 1. If 0
PPT Slide
Lager Image
  • 2. IfK>Kcwhenωres<ωs/6, then the crossing point inFig. 4(b) is moved to the left of (−1,j0), that is, |Tic(ωpc)| > 1, and the Nyquist curve ofTic(s) will make one clockwise encirclement of the point (−1,j0). As such, the active damping loop is unstable with two generated RHP closed-loop poles, andT(s) contains two RHP open-loop poles.
  • 3. IfK> 0 whenωs/2 ≥ωres≥ωs/6, thenωpc=ωres, |Tic(ωpc)| = ∞, and the Nyquist curve always encircles the critical point once in the clockwise direction [seeFig. 4(c)]. Thus, the active damping loop is unstable with two RHP closed-loop poles, andT(s) contains two RHP open-loop poles.
PPT Slide
Lager Image
Nyquist diagrams for the positive frequency of the active damping loop with different ωres. (a) Analog control (no delay). (b) ωs/6 > ωres. (c) ωs/6 ≤ ωresωs/2. (d) ωs/2 < ωres.
Notably, when ωres > ωs /2, the Nyquist curve may encircle the critical point [see Fig. 4 (d)]. However, this case will never occur because ωres < ωs /2 is required to ensure system controllability [26] .
IV. SYSTEM PERFORMANCE ANALYSIS
As shown in Eqs. (2) and (4), the system is of high order and contains many control parameters. Thus, analyzing system performance is difficult. As such, the controller and system model have to be simplified first.
- A. Simplified Controller and System Model
The quasi-PR controller shown in Eq. (4) can be rewritten as follows:
PPT Slide
Lager Image
where
PPT Slide
Lager Image
= nKrh / Kp is the relative resonant gain of the PR controller and n is the number of resonant controllers.
Fig. 5 shows the Bode diagram of the PR controller derived using Eq. (7) with different parameters. The following conclusions can be drawn: (1)
PPT Slide
Lager Image
determines the relative gain at the target frequency ωh . The gain gradually increases with the increase in
PPT Slide
Lager Image
. However, the phase lag introduced by the controller is also increased. (2) ωc mainly influences the resonant bandwidth at the target frequency to improve its robustness against the frequency fluctuation. (3) Kp shifts the magnitude plot up and down and has only a slight effect on the phase plot.
PPT Slide
Lager Image
Bode diagram of the multi-resonant quasi-PR controller (ωc = 3) with different parameters.
Based on Eq. (7), the gain at ωh can be obtained as follows:
PPT Slide
Lager Image
As shown in Fig. 5 , the quasi-PR controller can be approximated to Kp at frequencies greater than ωm , that is,
PPT Slide
Lager Image
Typically, the crossover angular frequency ωcs is restricted to a value lesser than ωres . Therefore, the LCL filter can be simplified as an L filter when calculating the magnitude at ωcs and the frequencies lesser than ωcs , which is also applicable for digitally controlled systems [8] . As such, the magnitude of T ( s ) and Gg ( s ) at ωcs and the frequencies lesser than ωcs can be simplified as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
Moreover, | T ( cs )| = 1, combining Eqs. (9) and (10) produces the following equation:
PPT Slide
Lager Image
- B. System Stability Constraint Condition Analysis
As analyzed previously, two RHP open-loop poles might be generated in T ( s ) because of the delay effect. Thus, to ensure system stability, the Nyquist curve for positive frequency has to make one counterclockwise encirclement of the point (−1, j 0 ). In the Nyquist diagrams of T ( s ) shown in Fig. 6 , the negative real axis crossings might occur at ωres or at ωres and ωs /6. Combining Eqs. (2), (9), and (12), the loop gain T ( s ) at ωres and ωs /6 can be obtained as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Nyquist diagrams of the loop gain T(s) with GPR(s) = Kp. (a) ωres < ωs/6. (b) ωresωs/6.
From Eq. (13), we observed that the Nyquist curve of T ( s ) always crosses over the negative real axis at ωres for K > 0. As shown in Eq. (6), Kc > 0 for ωres < ωs /6 and Kc ≤ 0 for ωres ωs /6. Thus, if ωres < ωs /6, the Nyquist curve crosses over the negative real axis one more time at ωs /6 for K > Kc [see Fig. 6 (a)] and, if ωres ωs /6, the Nyquist curve certainly crosses over the negative real axis at ωs /6 for K > 0 [see Fig. 6 (b)]. We noted that, if ωres = ωs /6, the crossing points at ωres and ωs /6 coincide with each other.
We assume the magnitude requirements of T ( s ) at ωres and ωs /6 are M 1 and M 2 , respectively. Based on the previous analysis, the stability constraint condition on the grid current loop can be derived as follows:
  • 1. If 0
PPT Slide
Lager Image
  • Then,ωcs
PPT Slide
Lager Image
  • The sampling frequencyfsis typically at least twice that of the switching frequencyfsw. Based on Eq. (16), the curve offcswith the increase infresforM1= 0.707 is depicted inFig. 7. Whenfresis close tofs/6,fcsdecreases significantly. This finding implies thatK
PPT Slide
Lager Image
Curves of fcs with the increase in fres for M1 = 0.707.
  • 2. IfK>Kcwhenωres<ωs/6, then two RHP open-loop poles exist inT(s). Thus, |T(jωres)| ≤M1< 1 and |T(jωs/6)| ≥M2> 1 are required. Then, the value range ofKcan be derived as follows:
PPT Slide
Lager Image
  • 3. IfK> 0 whenωres>ωs/6, then two RHP open-loop poles always exist inT(s), and |T(jωres)| ≥M1> 1 and |T(jωs/6)| ≤M2< 1 are required. Then, the value range ofKcan be expressed as follows:
PPT Slide
Lager Image
  • 4. Ifωres=ωs/6, then two RHP open-loop poles always exist inT(s). However, the Nyquist curve is only tangent to the negative real axis and never crosses over, as shown inFig. 6(b), which means that the system can hardly be stable irrespective ofK.
- C. Steady-state Error Analysis
As shown in Eq. (1), the grid current i 2 comprises two parts. One part is the command–current component generated by the current reference
PPT Slide
Lager Image
. The other part is the voltage–current component generated by the grid voltage ug . Based on Eq. (1), the grid current error can be derived as follows:
PPT Slide
Lager Image
Considering the role of the controller, if the magnitude of T ( s ) at the fundamental angular frequency ω 1 is sufficiently large, then 1 + T ( 1 ) ≈ T ( 1 ). Moreover, as the influence of the filter capacitor is negligible at ω 1 , considering Eqs. (1), (10), and (11), the fundamental component of i 2 ( s ) can be approximated as follows:
PPT Slide
Lager Image
As the quasi-PR controller can provide sufficiently large gain at ω 1 , the voltage–current component could be attenuated to decrease its value, that is, − ug ( 1 )/( Kp + K r1 ) ≈ 0. Thus, simplification of the steady-state error involves the amplitude error only, not the phase error. Moreover, as shown in Eq. (1), the harmonic currents are generated only by the grid harmonics. Therefore, the steady-state error requirement can be converted to the amplitude error requirements of the current components at ω 1 and ωh which are denoted by εi and εuh , respectively. Based on Eq. (19), εi and εuh are defined as follows:
PPT Slide
Lager Image
To ensure that the system is stable, ωh should be lesser than ωcs . Accordingly, substituting Eqs. (10) and (11) into Eq. (21), the relationship between the gain of the PR controller and steady-state amplitude errors can be approximated as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
Considering Eqs. (8) and (12), the relationship between
PPT Slide
Lager Image
and the steady-state errors can be calculated as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
- D. Stability Margin Analysis
Based on the stability constraint condition analysis discussed previously, we noted that the magnitude requirements M 1 and M 2 determine the GM of the system. Therefore, we focus on the PM only. As shown in Eq. (2), the PM is codetermined by the phases of the control object GLCL ( s ) and PR controller at ωcs . The phase of GLCL ( s ) at ωcs decreases with the increase in K [see Fig. 8 (a)]. With respect to the PR controller, Fig. 5 shows that the phase lag caused by the PR controller increases with the increase in ih
PPT Slide
Lager Image
. ωc is relatively small. Thus, the effect of ωc on the PM is disregarded. Kp has no effect on the phase response, but Kp affects ωcs . Thus, the PM of the system is related to K ,
PPT Slide
Lager Image
, and Kp .
PPT Slide
Lager Image
Bode diagrams of the control objective GLCL(s) with different K (a) and the loop gain T(s) with different Kp (b).
As analyzed previously, K regulates system stability and
PPT Slide
Lager Image
influences steady-state error. Therefore, when system stability and steady-state error have been ascertained, the system phase response could be derived by using Eq. (2) with Kp/n = 1, and PM is related to Kp only. As shown in Fig. 8 (b), the PM is changed with different values of ωcs , which is approximately proportional to the value of Kp . As | T ( cs )| = 1, substituting Eq. (9) into Eq. (2), the accurate relationship between Kp and ωcs can be derived as follows:
PPT Slide
Lager Image
V. DESIGN OF THE CURRENT CONTROLLER AND CAPACITOR–CURRENT–FEEDBACK COEFFICIENT
- A. Design Procedure of the Control Parameters
As analyzed previously, the damping gain K mainly influences the system stability, the relative resonant gain ih
PPT Slide
Lager Image
mainly regulates the steady-state error, and the proportional gain Kp mainly affects the PM of the system. Thus, a simplified controller design method based on the specifications of the current loop is proposed as follows:
Step 1 . The specifications of the grid current loop are determined, specifically εi and εuh by the requirements of the steady-state errors at the target frequencies, the PM by the requirements of the dynamic response and robustness, and ωcs by the requirement of the dynamic response speed.
  • As the fundamental voltage amplitude is greater than the harmonic voltages in the grid,εu1should be less thanεuh. In general, PM in the range of (30°, 60°) is required for good dynamic response and robustness. However, when more resonant controllers are used, the PM requirement has to be reduced because PM significantly decreases with the increases inandn. In[27],ωcsis limited to less than 0.3 times that ofωresto ensure system-sufficient PM. However, considering the variation ofωres, which will approachωs/3[10], because of the delay effect, the limit ofωcscould be relaxed, especially forωres<ωs/3. In general,ωcscould be set at approximately 0.45ωres. Moreover,ωcsshould be greater than the highest resonant frequencyωmof the controller and lesser thanωs/10, that is,ωs/10 >ωcs>ωm.
Step 2 . K is designed based on the stability requirement.
  • The value range ofKcan be obtained from Eq. (15), (17), or (18), which depends onωres. We noted thatMx≥ 1.414 (x= 1, 2) forMx> 1 andMx≤ 0.8 forMx< 1 are required to ensure robust system stability. Then, we select a suitable value from the value range ofK, with the compromise of dynamic performance and robustness.
Step 3 . ωc is designed based on the deviation range of the grid fundamental frequency.
  • Based on the definition of bandwidth, the difference of the two frequencies where the gain of the resonant part is equal tois the resonant bandwidth. Suppose that the maximum allowable deviation of the grid fundamental frequency is Δf, thus,ωc= 2πΔfcan be obtained.
Step 4 .
PPT Slide
Lager Image
is designed based on the steady-state error requirements.
  • Based on the requirements of the amplitude steady-state errorsεiandεuh,can be calculated from Eqs. (24) and (25). To ensure a larger system PM,should have a smaller value.
Step 5 . Kp is designed based on the PM requirement.
  • After the previous steps, the phase response of the system can be obtained by drawing the Bode plot of the loop gainT(s) from Eqs. (2) and (7), withKp/n= 1. We check the PM at the predesignedωcs. If the PM satisfies the requirement in Step 1,ωcsremains unchanged; if not, a larger PM should be selected to ensure system stability with an acceptableωcs. Then, we calculateKpfrom Eq. (26).
- B. Design Example
Based on a 5 kW prototype in the laboratory, two different filter capacitor values are considered to range the filter resonance frequency. The parameters of the LCL-type PWM converter are given in TABLE I . We consider four resonant controllers ( h = 1, 5, 7, 11). Given that fres in Case I is close to fs /6, K > Kc is preferred rather than K < Kc . From [20] , the maximum deviation of the grid fundamental frequency is approximately 0.5 Hz. As such, Δ f is equal to 0.5 Hz in Step 3. The design procedures and results are shown in Table II , where GM 1 and GM 2 denote the GM around ωres and ωs /6, respectively. The parameters of the quasi-PR controller corresponding to Eq. (4) are Kp = 9.6, K r1 = 180, and Krh = 84 for Case I and Kp = 7.8, K r1 = 146.25, and Krh = 68.25 for Case II.
LCL FILTER SYSTEM PARAMETERS
PPT Slide
Lager Image
LCL FILTER SYSTEM PARAMETERS
DESIGN PROCEDURE AND RESULTS
PPT Slide
Lager Image
DESIGN PROCEDURE AND RESULTS
Fig. 9 shows the Bode diagrams of the grid current loop before and after compensation with different controllers. By comparison, we observed that the phase lag introduced by the controller will shift the −180° crossing point, which could improve system robustness to a certain extent, especially for fres close to fs /6 when the active damping loop is unstable. Specifically, for Case I, the GM increases from GM 1 = 0.898 dB and GM 2 = −0.782 dB with one resonant controller ( n = 1) to GM 1 = 1.27 dB and GM 2 = −1.27 dB with four resonant controllers ( n = 4), but the PM decreases from 33.7° to 31.2°.
PPT Slide
Lager Image
Bode diagrams of the grid current loop before and after compensation with different controllers: (a) Case I and (b) Case II.
For Case II, the GM increases slightly from 2.21 dB to 2.27 dB and the PM decreases from 34.1° to 29.3°. Moreover, considering the delay effect, we observed that the LCL resonant frequency deviates from ωres . The actual resonant angular frequency
PPT Slide
Lager Image
and the actual damping ratio ξ' are derived in the Appendix and expressed as follows:
PPT Slide
Lager Image
PPT Slide
Lager Image
In Eq. (27), by letting
PPT Slide
Lager Image
, obtaining sin(1.5 Tsω ) > 0, f ( ω ) > 1 for ω < ωs /3 and sin(1.5 Tsω ) < 0, f ( ω ) < 1 for ω > ωs /3 becomes relatively easy. As a result, with the increase in K ,
PPT Slide
Lager Image
is greater than ωres for ωres < ωs /3 and lesser than ωres for ωres > ωs /3, but never exceeds ωs /3. This finding means that
PPT Slide
Lager Image
will be close to ωs /3 with the increase in K . We noted that, for K = Kc , the active damping loop is marginally stable with ωpc = ωs /6 and has no contribution to the resonance damping,
PPT Slide
Lager Image
= ωs /6.
In the actual condition, L 1 and C do not significantly change, except for L 2 (considering the impact of grid impedance). Fig. 10 shows the Nyquist plots of the grid current loop around the critical point when L 2 is decreased by 50% or increased by 100%. This finding indicates that the grid current loop remains stable for both cases when L 2 is decreased by 50% or increased by 100%. Nevertheless, the PM of Case I changes from 23.9° to 33.3° [see Fig. 10 (a)] and the PM of Case II changes from 26.6° to 2.07° [see Fig. 10 (b)]. We noted that the GM decreases significantly for Cases I and II, and the active damping loop of Case II becomes unstable when L 2 is decreased by 50%. Thus, to improve system robustness, K should have a larger value in Step 2 when the active damping loop is stable.
PPT Slide
Lager Image
Nyquist plots of the grid current loop around the critical point when L2 changes from −50% to 50%: (a) Case I and (b) Case II.
VI. EXPERIMENTAL VERIFICATION
A 5 kW prototype has been constructed in the laboratory to verify the effectiveness of the proposed design method. The key parameters of the prototype are listed in TABLE I . A Yy -type galvanic isolation transformer is placed between the LCL-type PWM converter and the grid. The grid voltages and currents are sensed by voltage/current halls. The control algorithm is implemented in a 32-bit float-point digital signal processor (TMS320F28335). The quasi-PR controller is discretized by Tustin transformation. In this study, the capacitor current is indirectly sensed through the difference between i 1 and i 2 , and the current waveforms are inverted on the oscilloscope.
Fig. 11 shows the experimental waveforms at no load for Cases I and II, where the current tracking error of α -axis e is measured through the analog-to-digital conversion interface on the control board. From the spectra of uga , we observed that low-order harmonics exist in the real power grid, and the total harmonic distortion (THD) is 2.293%. The measured steady-state errors normalized with respect to ug are listed in TABLE III . Considering the current distortion and the effect of dead time, the errors are slightly larger than the actual values of ε u1 , which are calculated from Eq. (21) using the designed parameters.
PPT Slide
Lager Image
Experimental waveforms at no load for (a) Case I and (b) Case II. From top to bottom: the DC link voltage udc, the grid voltage uga, the grid current i2a, the spectrum of uga, and the current tracking error of α-axis e.
MEASURED RESULTS
PPT Slide
Lager Image
MEASURED RESULTS
Fig. 12 shows the experimental waveforms when the DC resistant load is 40 Ω, with power factor (PF) set to 1.0. We observed that the grid current is sinusoidal and the harmonics at the target frequencies (5th, 7th, and 11th) have been well suppressed. Moreover, the resonant peak is not dampened to less than 0 dB, which coincided with the design results. However, considering the leakage inductance of the isolation transformer, the actual resonant frequency
PPT Slide
Lager Image
is slightly lesser than the theoretical value shown in Fig. 9 . The actual resonant frequencies are approximately 1,900 Hz for Case I and 1,650 Hz for Case II. The measured error e , PF, and harmonic contents at the target frequencies are listed in TABLE III . The measured errors are 0.524% for Case I and 0.636% for Case II, which are slightly smaller than that at no load because the command–current error εi at rectifier mode can cancel some of the voltage–current error ε u1 , which can be observed in Eq. (19) when the direction of current i 2 at inverter mode is positive in the actual system. Given that the gain at ω 1 for Case I is larger than that for Case II, the measured error and PF for Case I are slightly smaller than that for Case II.
PPT Slide
Lager Image
Experimental waveforms with a DC resistant load R = 40 Ω and PF set to 1.0 for (a) Case I and (b) Case II. From top to bottom: the DC link voltage udc, the grid voltage uga, the grid current i2a, the spectrum of i2a, and the current tracking error of α-axis e.
To evaluate dynamic performance, the LCL-type PWM converter operating without the outer voltage loop is used. The DC link voltage is provided by a three-phase noncontrolled rectifier. Fig. 13 shows the transient experimental results when the grid current reference
PPT Slide
Lager Image
ranges between 1 A and 5 A for Cases I and II with PF set to 1.0. We observed that the inverters rapidly responded to the reference change and the current tracking error of α -axis e is sustained at approximately zero all the time. Nevertheless, oscillation occurs during the current step change because the resonant peaks are not dampened to less than 0 dB, which implies that the actual damping ratios are small because of the delay effect. Based on Eq. (28), the actual damping ratio ξ' can be calculated at approximately 0.07 for Case I and 0.01 for Case II.
PPT Slide
Lager Image
Transient experimental results at inverter mode when the grid current reference ranges between 1 A and 5 A: (a) Case I and (b) Case II.
VII. CONCLUSIONS
In this study, we analyzed the characteristics and controller design method for the digitally controlled LCL-type PWM converter based on the multi-resonant quasi-PR controller and capacitor–current–feedback active damping. The effect of the delay on the active damping performance is investigated by using the Nyquist diagrams. If the damping loop is unstable, two RHP open-loop poles are generated in the grid current loop, which is codetermined by the LCL resonant frequency ( fres ) and the active damping gain ( K ). Then, the system stability constraint condition can be obtained based on the Nyquist stability criterion. Moreover, impact analysis of the control parameters on the current loop performance identifies that different control parameters play different decisive roles in the current loop performance: K mainly influences the system stability, the relative resonant gain mainly regulates the steady-state error, and the proportional gain mainly affects the PM of the system. Based on the analysis, a simplified controller design method based on the system specifications is proposed. The proposed method can obtain the optimum controller, which ensures system stability with high robustness and strong ability to suppress the effect of the grid voltage low-order harmonics. Following the method, two design examples are given and the design results are directly used on a laboratory prototype. The experimental results are consistent with the design specifications. These findings confirm the practicability and operability of the proposed design method.
Acknowledgements
This work was supported by the National Basic Research Program of China under Award No. 2010CB227206.
BIO
Yongcan Lyu was born in Hubei province, China, in 1985. He received his B.E. degree in Automation from Northeastern University, Shenyang, China, in 2007 and his M.S. degree in Thermal Engineering from Huazhong University of Science and Technology (HUST), Wuhan, China, in 2009. He is currently working toward his Ph.D. degree in Electrical Engineering at the School of Electrical and Electronic Engineering, HUST, Wuhan, China. His current research interests include digital control technique and battery energy storage systems.
Hua Lin was born in Wuhan, China, in 1963. She received her B.S. degree in Industrial Automation from Wuhan University of Technology, Wuhan, China, in 1984; her M.S. degree in Electrical Engineering from Naval University of Engineering, Wuhan, China, in 1987; and her Ph.D. degree in Electrical Engineering from Huazhong University of Science and Technology (HUST), Wuhan, China, in 2005. From 1987 to 1999, she was with the Department of Electrical Engineering, Naval University of Engineering, as a lecturer and associate professor. Since 1999, she has been with the School of Electrical and Electronic Engineering, HUST, where she became a full professor in 2005. From October 2010 to April 2011, she has been a visiting scholar with the Center for Advanced Power Systems, Florida State University, Tallahassee, FL, USA. She has been engaged in research and teaching in the field of power electronics and electrical drives. Her research interests include high-power, high-performance AC motor drives, novel power converters, and their control. She has authored or coauthored more than 30 technical papers in journals and conferences. Dr. Lin received the second-grade National Scientific and Technological Advance Prize of China in 1996 and 2003.
References
Vazquez S. , Lukic S. M. , Galvan E. , Franquelo L. G. , Carrasco J. M. 2010 “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron. 57 (12) 3881 - 3895    DOI : 10.1109/TIE.2010.2076414
Singh B. , Singh B. N. , Chandra A. , Al-Haddad K. , Pandey A. , Kothari D. P. 2004 “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron. 51 (3) 641 - 660    DOI : 10.1109/TIE.2004.825341
Tang S. , Peng L. , Kang Y. 2011 “Active damping method using Grid-Side current feedback for active power filters with LCL filters,” Journal of Power Electronics 11 (3) 311 - 318    DOI : 10.6113/JPE.2011.11.3.311
Hu G. , Chen C. , Shanxu D. 2013 “New active damping strategy for LCL-Filter-Based Grid-Connected inverters with harmonics compensation,” Journal of Power Electronics 13 (2) 287 - 295    DOI : 10.6113/JPE.2013.13.2.287
He J. , Li Y. 2012 “Generalized closed-loop control schemes with embedded virtual impedances for voltage source converters with LC or LCL filters,” IEEE Trans. Power Electron. 27 (4) 1850 - 1861    DOI : 10.1109/TPEL.2011.2168427
Zhou L. , Yang M. , Liu Q. , Guo K. 2013 “New control strategy for three-phase grid-connected LCL inverters without a phase-locked loop,” Journal of Power Electronics 13 (3) 487 - 496    DOI : 10.6113/JPE.2013.13.3.487
Parker S. G. , McGrath B. P. , Holmes D. G. 2014 “Regions of active damping control for LCL filters,” IEEE Trans. Ind. Appl. 50 (1) 424 - 432    DOI : 10.1109/TIA.2013.2266892
Bao C. , Ruan X. , Wang X. , Li W. , Pan D. , Weng K. 2012 “Design of injected grid current regulator and capacitor-current-feedback active-damping for LCL-type grid-connected inverter,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE) 579 - 586
Bao C. , Ruan X. , Wang X. , Li W. , Pan D. , Weng K. 2014 “Step-by-step controller design for LCL-type grid-connected inverter with capacitor–current-feedback Active-Damping,” IEEE Trans. Power Electron. 29 (3) 1239 - 1253    DOI : 10.1109/TPEL.2013.2262378
Pan D. , Ruan X. , Bao C. , Li W. , Wang X. 2014 “Capacitor-Current-Feedback active damping with reduced computation delay for improving robustness of LCL-Type Grid-Connected inverter,” IEEE Trans. Power Electr. 29 (7) 3414 - 3427    DOI : 10.1109/TPEL.2013.2279206
Buso S. , Mattavelli P. 2006 Digital Control in Power Electronics Morgan & Claypool 17 - 66
Holmes D. G. , Lipo T. A. , McGrath B. , Kong W. Y. 2009 “Optimized design of stationary frame three phase AC current regulators,” IEEE Trans. Power Electron. 11 (24) 2417 - 2426    DOI : 10.1109/TPEL.2009.2029548
Zhang X. , Spencer J. W. , Guerrero J. M. 2013 “Small-signal modeling of digitally controlled Grid-Connected inverters with LCL filters,” IEEE Trans. Ind. Electron. 60 (9) 3752 - 3765    DOI : 10.1109/TIE.2012.2204713
Liserre M. , Teodorescu R. , Blaabjerg F. 2006 “Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotatiing frame,” IEEE Trans. Power Electron. 21 (3) 836 - 841    DOI : 10.1109/TPEL.2006.875566
Lascu C. , Asiminoaei L. , Boldea I. , Blaabjerg F. 2007 “High performance current controller for selective harmonic compensation in active power filters,” IEEE Trans. Power Electron. 22 (5) 1826 - 1835    DOI : 10.1109/TPEL.2007.904060
Yepes A. G. , Freijedo F. D. , Lopez O. , Doval-Gandoy J. 2011 “Analysis and design of resonant current controllers for voltage-source converters by means of nyquist diagrams and sensitivity function,” IEEE Trans. Ind. Electron. 58 (11) 5231 - 5250    DOI : 10.1109/TIE.2011.2126535
Yepes A. G. , Freijedo F. D. , Lopez O. , Doval-Gandoy J. 2011 “High- performance digital resonant controllers implemented with two integrators,” IEEE Trans. Power Electron. 26 (2) 563 - 576    DOI : 10.1109/TPEL.2010.2066290
Zmood D. N. , Holmes D. G. 2003 “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron. 18 (3) 814 - 822    DOI : 10.1109/TPEL.2003.810852
Teodorescu R. , Blaabjerg F. , Liserre M. , Loh P. C. 2006 “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc. Electric Power Applications 153 (5) 750 - 762    DOI : 10.1049/ip-epa:20060008
IEEE Recommended practice for utility interface of photovoltaic (PV) systems 2000 IEEE Standard 929
Castilla M. , Miret J. , Matas J. , de Vicuna L. G. , Guerrero J. M. 2009 “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron. 56 (11) 4492 - 4501    DOI : 10.1109/TIE.2009.2017820
Castilla M. , Miret J. , Matas J. , de Vicuna L. G. , Guerrero J. M. , Abeyasekera T. 2008 “Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters,” IEEE Trans. Ind. Electron. 55 (7) 2724 - 2733    DOI : 10.1109/TIE.2008.920585
Huacheng Y. , Hua L. , Yongcan L. , Yong L. , Xingwei W. 2013 "A multi-resonant PR inner current controller design for reversible PWM rectifier," in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC) 316 - 320
Li B. , Zhang M. , Huang L. , Hang L. , Tolbert L. M. 2013 “A robust multi-resonant PR regulator for three-phase grid-connected VSI using direct pole placement design strategy,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC) 960 - 966
Rodriguez P. , Pou J. , Bergas J. , Candela J. I. , Burgos R. P. , Boroyevich D. 2007 “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron. 22 (2) 584 - 592    DOI : 10.1109/TPEL.2006.890000
Gabe I. J. , Montagner V. F. , Pinheiro H. 2009 “Design and implementation of a robust current controller for VSI connected to the grid through an LCL filter,” IEEE Trans. Power Electron. 24 (6) 1444 - 1452    DOI : 10.1109/TPEL.2009.2016097
Tang Y. , Loh P. , Wang P. , Choo F. , Gao F. 2012 “Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters,” IEEE Trans. Power Electron. 27 (3) 1433 - 1443    DOI : 10.1109/TPEL.2011.2162342