Advanced
Role of Wnt signaling in fracture healing
Role of Wnt signaling in fracture healing
BMB Reports. 2014. Dec, 47(12): 666-672
Copyright © 2014, Korean Society for Biochemistry and Molecular Biology
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : September 05, 2014
  • Accepted : September 29, 2014
  • Published : December 31, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Huiyun Xu
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
Jing Duan
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
Dandan Ning
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
Jingbao Li
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
Ruofei Liu
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
Ruixin Yang
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
Jean X. Jiang
Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas 78229, the United States
Peng Shang
Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province 710072, People’s Republic of China
celldon@126.com

Abstract
The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair. [BMB Reports 2014; 47(12): 666-672]
Keywords
INTRODUCTION
‘Wnt’ was named after both the Drosophila Wg (wingless) gene (1) and the homolog of mouse mammary oncogene Int-1 (2) . Wnts now comprise a family of secreted glycoproteins and play critical roles in embryonic development, carcinogenesis, and other important physical processes, such as bone metabolism. To date, 19 different Wnt proteins have been found in humans and mice, including WNT1-WNT11, and WNT16 (3) . It is well known that the Wnt signaling pathway plays several major roles in skeletal development and homeostasis (4 , 5) . To a certain degree, the process of fracture repair is similar to that of embryonic bone development (6) . Thus, in recent years, increasing attention has been placed on the role of Wnt signaling in fracture healing (4 , 7 , 8) .
As a regenerative tissue, bone is able to repair itself after a fracture. However, ~3-10% of fractures fail to heal properly, with issues such as delayed union and non-union (9) . In the United States, it is estimated that 100,000 fractures lead to non-union each year (10) . Thus, it is important to find new anabolic agents that enhance bone regeneration and promote bone repair to improve the quality of treatment for fracture patients. In this article, we summarize some of the findings on the role of Wnt signaling pathway in fracture healing.
WNT SIGNALING PATHWAY
In the canonical Wnt signal pathway, the Wnt protein binds to the membrane receptor ‘Frizzled’ (Fzd) (11) , which is a seven-transmembrane protein. Then, together with other coreceptors, LRP5 and LRP6 (low-density lipoprotein receptor-related protein) (12) , the protein activates ‘disheveled’ (Dsh), which inhibits the activation of glycogen synthase kinase-3β (GSK-3β). Inactive GSK-3β is unable to phosphorylate β-catenin, so the unphosphorylated β-catenin escapes degradation by the proteasome complex, then translocates into the nucleus and associates with transcription factors ‘T cell factor 7’ (Tcf7) and ‘lymphoid enhancing factor 1’ (Lef1) to regulate the expression of relevant genes (13) . In the β-catenin-independent non-canonical Wnt signal pathway, calcium signaling is thought to be the central mediator (14 - 16) . The interaction of Wnts and Fzd leads to the formation of a tri-protein complex of Dsh-Axin-GSK, which mediates the phosphorylation of co-receptor tyrosine-protein kinase transmembrane receptor 1/2 (Ror1/2). The binding of Wnts to Fzd and Ror1/2 activates membrane-bound phospholipase C (PLC) and causes an increase in the concentration of inositol triphosphate (IP 3 ), 1,2 diacylglycerol (DAG), and intracellular calcium. This leads to alterations in downstream cellular function (17) . Additionally, some secreted proteins, such as Dkk (dickkopf), Sost (sclerostin), and Sfrp (secreted frizzled-related proteins), may interact with LRP5/6 or Fzd receptor, and act as antagonists, inhibiting the Wnt signaling pathway (18 - 20) .
FRACTURE HEALING
Fracture healing is a complex biological process that involves different types of bone cells and the interactions between cells, growth factors, and extracellular matrix. The repair consists of four overlapping stages: inflammatory response (also known as hematoma formation), soft callus formation, hard callus formation, and bone remodeling (21) . During the process, bone cells are sequentially activated to form new bone. After hematoma formation, mesenchymal stem cells are recruited and proliferate and differentiate into osteogenic cells: chondrocytes and osteoblasts. The chondrocytes form a soft callus, which gives the fracture a stable structure. Later, the soft callus is mineralized and replaced with bone through endochondral ossification. At the same time, osteoblasts mineralize, generating a hard callous through intramembranous ossification. Finally, osteoclasts and osteoblasts are responsible for the bone remodeling process, which establishes new bone tissues (21 - 24) .
WNT SIGNALING AND FRACTURE HEALING
During the repair process, the expression of many Wnt ligands (WNT4, 5b, 10b, 11, and 13) and receptors Fz1, 2, 4, and 5 are upregulated during fracture healing (25) . Also, some target proteins of the Wnt pathway, such as c-myc and connexin 43, are activated (26 , 27) . These results have shown the role of Wnt signaling in regulating bone formation during the repair process.
- β-catenin
Several studies have shown the activation of β-catenin signaling at fracture sites (28 - 31) . Chen et al . have shown that β-catenin protein is highly expressed during the entire period of fracture repair (25) . They used loss-of-function and gain-offunction approaches and found that in the early stage of healing, β-catenin controls the differentiation of mesenchymal cells, into osteoblasts and chondrocytes. Either an increase or a decrease of β-catenin interferes with the early stage of bone healing. In the later stages, when cells are committed to be osteoblasts, β-catenin promotes the differentiation of osteoblasts into bone and stimulates fracture healing (25) .
- LRP
LRP5 and LRP6 are required for successful fracture repair. The common genetic variants of LRP5 and LRP6 lead to decreased bone mass and bone mineral density (BMD). Furthermore, these variants have been shown to increase fracture risk in large cohorts of elderly Australian women (32) and Caucasian men (33) . LRP5 mutations in mice have been shown to delay the repair of mandibular bone (28) . Lrp5 -/- mice show impaired bone repair, with reduced callus area, bone mineral content (BMC), BMD, and biomechanical properties (34) . A gain-offunction mutation in LRP5 delayed mandibular (28) and tibial (31) skeletal repair due to early repair stage exuberant cell proliferation, which postponed osteoblast differentiation at the injury site.
- GSK-3β
The function of GSK-3β during fracture healing has been investigated using inhibitors of GSK-3β. Oral treatment with lithium chloride (LiCl), a known inhibitor of GSK-3β (35) , can activate Wnt signaling and accelerate fracture repair. However, this effect only occurred in the later phases of repair when mesenchymal cells have committed to become osteoblasts. Early lithium treatment, before the fracture, causes the aggregation of undifferentiated mesenchymal cells and reduces bone at fracture sites (25) . LiCl attenuates the damaging effects of alcohol exposure on healing by restoring cartilaginous callous formation and endochondral ossification at fracture sites (36) . For human cases, LiCl treatment is associated with a decreased risk of fractures (37) . The oral administration of AZD2858, a bioactive GSK3 inhibitor, heals fractures rapidly and increases the strength of healed bone versus vehicle-treated controls (38) .
- Sfrp1
Sfrp1 interacts directly with Fzd or Wnts to antagonize canonical Wnt signaling (39) . The expression of sfrp increases in Wnt-dependent early bone formation, along with the enhancement of β-catenin expression. Sfrp1-deficient mice have increased BMD, bone volume, and mineral apposition in the trabecular region, but not in the cortical region (40) . Microarray expression analysis shows a significant decrease in the expression of sfrps 4 days after fracture. However, sfrp1 and sfrp4 are upregulated at both day 8 and day 14 after fracture, indicating negative regulation of bone formation during the osteogenic phase of repair at the injury site (29) . The loss of sfrp1 function in vivo improves fracture repair by directly shifting progenitor cells into osteoblast lineage to promote early bone union. The sfrp1 -/- mice showed a dramatic reduction in the cartilage callous, and increased intramembranous bone formation at day 14 after fracture. These mice also exhibited earlier bone remodeling during the 28 day fracture repair process than wild-type mice (41) .
- Sost
Sost is a secreted glycoprotein expressed primarily by osteocytes in bone tissue. Sost binds to the extracellular domain of LRP5 and LRP6 and disrupts the formation of Wnt-LRP complex (42) . Sost knockout mice have increased BMD, bone volume, bone formation, and bone strength (43 , 44) . Also, these mice have more bone in the fracture healing defect, which is due to an enhancement of the thickness of trabecularized spicules and osteoblast numbers (44 , 45) . Kambiz Sarahrudi et al . showed the first evidence demonstrating that Sost increases significantly during human fracture repair (46) . Several in vivo studies have shown that systemic administration of Sost antibodies increased bone formation significantly at the site of fractures in several animal models, including mice, rats, and cynomolgus monkeys (44 , 47 - 53) . Antibody treatment improved bone density and the strength of non-fractured bones (47 , 52) . Anti-Sost therapy represents a promising approach for osteoporosis and fracture healing.
- Dkk1
Dkk1 forms a complex with Lrp5/6 and disrupts the Wnt signaling pathway (54) . Dkk1 allele deletion mice have increased bone mass without affecting the bone resorption process (55) . Kim et al . showed that adenoviral expression of Dkk1 effectively prevented the differentiation of osteoprogenitor cells and blocked bone formation at the injury site (31) . Also, Dkk1 treatment caused a large amount of undifferentiated mesenchymal-like tissues and reduced chondrogenic differentiation at fracture sites (25) . Dkk1 antibodies significantly promoted fracture repair only when treated on the first day, not 4 days after the operation (34) . Inhibition of Dkk1 enhanced the healing process, resulting in mechanically stronger bone at the fracture site (56) .
INTERACTION BETWEEN WNTS AND OTHER BONE REGULATORY MOLECULES DURING FRACTURE HEALING
There are also other molecules that play roles in fracture healing process also via interactions with Wnt signaling.
- Cx43
As the most abundant gap junction protein in bone, connexin43 (Cx43) is essential for bone homeostasis. Also, recent studies by Loiselle et al . have shown the role of Cx43 in fracture repair. Targeted deletion of Cx43 in osteoblasts/osteocytes delayed bone formation and impaired mechanical properties during fracture healing. In Cx43-deficient fractures, β-catenin expression was attenuated, while Sost expression was increased. The changes in fracture healing in Cx43-deficient mice can be rescued by restoring β-catenin expression through inhibition of GSK-3β activity with LiCl treatment (57 , 58) . Cx43 may be a potential therapeutic target to enhance fracture healing via regulating β-catenin expression.
- PTH
As a clinically approved anabolic drug used to treat osteoporosis, parathyroid hormone (PTH) is thought to also be effective for fracture repair (59) , which is at least partially Wnt dependent (60) . PTH enhances the expression of several Wnts and nuclear localized βcatenin protein (30) . It also induces Lrp5/6 expression in the fracture callus, and promotes levels of Dkk1 and Sost during fracture healing.
- BMP
Another growth factor used to accelerate bone healing is bone morphogenetic protein (BMP) (61 - 64) , which can also cooperate with the Wnt signaling to promote osteoblast differentiation and new bone formation (65 , 66). Wnt signaling is involved in chondrogenesis process induced by BMP-2. LiCl treatment decreased the upregulation of LEF-1 and βcatenin induced by BMP-2 during later chondrogenesis (67) . BMP-induced bone formation could be inhibited by Sost, both in vitro and in vivo (68 , 69) . Yan Yiu Yu et al . have shown that in BMP-treated calluses, the Wnt pathway is activated (70) .
CONCLUSIONS AND FUTURE PERSPECTIVES
In this review, we summarize the current state of knowledge on Wnt signaling during the fracture repair process, which involves a well-organized interaction of various bone cells and activated regulatory factors ( Table 1 ). Generally, activation of Wnt signaling is helpful to accelerate bone repair, and mutations in β-catenin or LRP5/6 reduce bone healing. Moreover, inhibition of negative regulators in the Wnt signaling pathway, such as GSK-3β and Sost, can improve bone formation at fracture sites. Thus, inhibitors of GSK-3β and Sost neutralizing antibodies may be promising and feasible targets for bone repair. Unfortunately, efforts to develop Sost antibodies for fracture healing have been abandoned by Amgen and their partner UCB, mainly due to the high investment requirement and the smaller market for fracture healing than osteoporosis. Thus, more hope should be placed on inhibitors of GSK-3β for developing drugs to promote bone repair. Nonetheless, there is a long way to go. More work remains to be done in clinical and basic research to optimize treatment strategies. For example, the disparate roles of Wnts in different phases of fractures should be considered in the future development of therapeutic strategies.
Summary of the publishedin vivostudies of the role of Wnt signaling in fracture healing
PPT Slide
Lager Image
Summary of the published in vivo studies of the role of Wnt signaling in fracture healing
Acknowledgements
We are thankful for grants from the National Basic Research Program of China (2011CB710903), the National Natural Science Foundation of China (31170812, 81472090, 31328016), the Fundamental Research Funds for the Central Universities (3102014JKY15012), the National Institute of Health (grant EY012085), and the Welch Foundation (grant AQ-1507).
References
Nüsslein-Volhard C. , Wieschaus E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287 795 - 801    DOI : 10.1038/287795a0
Rijsewijk F. , Schuermann M. , Wagenaar E. , Parren P. , Weigel D. , Nusse R. (1987) The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50 649 - 657    DOI : 10.1016/0092-8674(87)90038-9
Nusse R. , Varmus H. (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 31 2670 - 2684    DOI : 10.1038/emboj.2012.146
Regard J. B. , Zhong Z. , Williams B. O. , Yang Y. (2012) Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb. Perspect. Biol. 4 a007997 -    DOI : 10.1101/cshperspect.a007997
Chen Y. , Alman B. A. (2009) Wnt pathway, an essential role in bone regeneration. J. Cell. Biochem. 106 353 - 362    DOI : 10.1002/jcb.22020
Bruder S. P. , Fink D. J. , Caplan A. I. (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regenaration therapy. J. Cell. Biochem. 56 283 - 294    DOI : 10.1002/jcb.240560303
Silkstone D. , Hong H. , Alman B. A. (2008) β-Catenin in the race to fracture repair: in it to Wnt. Nat. Clin. Pract. Rheumatol. 4 413 - 419    DOI : 10.1038/ncprheum0838
Einhorn T. A. (2010) The Wnt signaling pathway as a potential target for therapies to enhance bone repair. Sci. Transl. Med. 2 42ps36 -    DOI : 10.1126/scitranslmed.3001149
Tzioupis C. , Giannoudis P. V. (2007) Prevalence of long-bone non-unions. Injury 38 S3 - S9    DOI : 10.1016/S0020-1383(07)80003-9
Hak D. J. , Fitzpatrick D. , Bishop J. A. , Marshd J. L. , Tilpe S. , Schnettlere R. , Simpsonf H. , Alte V. (2014) Delayed union and nonunions: Epidemiology, clinical issues, and financial aspects. Injury 45 S3 - S7    DOI : 10.1016/j.injury.2014.04.002
Bhanot P. , Brink M. , Samos C. H. , Hsieh J. C. , Wang Y. , Macke J. P. , Andrew D. , Nathans J. , Nusse R. (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382 225 - 230    DOI : 10.1038/382225a0
He X. , Semenov M. , Tamai K. , Zeng X. (2004) LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development 131 1663 - 1677    DOI : 10.1242/dev.01117
Eastman Q. , Grosschedl R. (1999) Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. 11 233 - 240    DOI : 10.1016/S0955-0674(99)80031-3
Slusarski D. C. , Corces V. G. , Moon R. T. (1997) Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390 410 - 413    DOI : 10.1038/37138
Nusse R. (1999) WNT targets: repression and activation. Trends Genet. 15 1 - 3    DOI : 10.1016/S0168-9525(98)01634-5
De A. (2011) Wnt/Ca2+signaling pathway: a brief overview. Acta Biochim. Biophys. Sin. 43 745 - 756    DOI : 10.1093/abbs/gmr079
Kühl M. (2004) The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front. Biosci. 9 967 - 974    DOI : 10.2741/1307
Nakamura R. E. I. , Hackam A. S. (2010) Analysis of Dickkopf3 interactions with Wnt signaling receptors. Growth Factors 28 232 - 242    DOI : 10.3109/08977191003738832
Hoeppner L. H. , Secreto F. J. , Westendorf J. J. (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin. Ther. Targets 13 485 - 496    DOI : 10.1517/14728220902841961
Patthy L. (2000) The WIF module. Trends Biochem. Sci. 25 12 - 13    DOI : 10.1016/S0968-0004(99)01504-2
Einhorn T. A. (1998) The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355 S7 - S21    DOI : 10.1097/00003086-199810001-00003
Marsell R. , Einhorn T. A. (2011) The biology of fracture healing. Injury 42 551 - 555    DOI : 10.1016/j.injury.2011.03.031
Schindeler A. , McDonald M. M. , Bokko P. , Little D. G. (2008) Bone remodeling during fracture repair: The cellular picture. Semin. Cell Dev. Biol. 19 459 - 466    DOI : 10.1016/j.semcdb.2008.07.004
Phillips A. M. (2005) Overview of the fracture healing cascade. Injury 36 S5 - S7    DOI : 10.1016/j.injury.2005.07.027
Chen Y. , Whetstone H. C. , Lin A. C. , Nadesan P. , Wei Q. , Poon R. , Alman B. A. (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 4 e249 -    DOI : 10.1371/journal.pmed.0040249
Hadjiargyrou M. , Lombardo F. , Zhao S. , Ahrens W. , Joo J. , Ahn H. , Jurman M. , White D. W. , Rubin C. T. (2002) Transcriptional profiling of bone regeneration Insight into the molecular complexity of wound repair. J. Biol. Chem. 277 30177 - 30182    DOI : 10.1074/jbc.M203171200
Zhong N. , Gersch R. P. , Hadjiargyrou M. (2006) Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 39 5 - 16    DOI : 10.1016/j.bone.2005.12.008
Leucht P. , Kim J. B. , Helms J. A. (2008) Beta-catenin-dependent Wnt signaling in mandibular bone regeneration. J. Bone Joint. Surg. 90 3 - 8    DOI : 10.2106/JBJS.G.01136
Macsai C. E. , Georgiou K. R. , Foster B. K. , Zannettino A. C. W. , Xian C. J. (2012) Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair. Bone 50 1081 - 1091    DOI : 10.1016/j.bone.2012.02.013
Kakar S. , Einhorn T. A. , Vora S. , Miara L. J. , Hon G. , Wigner N. A. , Toben D. , Jacobsen K. A. , Al-Sebaei M. O. , Song M. , Trackman P. C. , Morgan E. F. , Gerstenfeld L. , Barnes G. L. (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J. Bone Miner. Res. 22 1903 - 1912    DOI : 10.1359/jbmr.070724
Kim J. B. , Leucht P. , Lam K. , Luppen C. , Ten Berge D. , Nusse R. , Helms J. A. (2007) Bone regeneration is regulated by wnt signaling. J. Bone Miner. Res. 22 1913 - 1923    DOI : 10.1359/jbmr.070802
Bollerslev J. , Wilson S. G. , Dick I. M. , Dick I. M. , Islam F. M. A. , Ueland T. , Palmer L. , Devine A. , Prince R. L. (2005) LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 36 599 - 606    DOI : 10.1016/j.bone.2005.01.006
van Meurs J. B. J. , Rivadeneira F. , Jhamai M. , Hugens W. , Hofman A. , van Leeuwen J. P. , Pols H. A. , Uitterlinden A. G. (2006) Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J. Bone Miner. Res. 21 141 - 150    DOI : 10.1359/JBMR.050904
Komatsu D. E. , Mary M. N. , Schroeder R. J. , Robling A. G. , Turner C. H. , Warden S. J. (2010) Modulation of Wnt signaling influences fracture repair. J. Orthop. Res. 28 928 - 936
Phiel C. J. , Klein P. S. (2001) Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41 789 - 813    DOI : 10.1146/annurev.pharmtox.41.1.789
Lauing K. L. , Sundaramurthy S. , Nauer R. K. , Callaci J. J. (2014) Exogenous activation of Wnt/β-Catenin signaling attenuates binge alcohol-induced deficient bone fracture healing. Alcohol. Alcohol. 9 399 - 408    DOI : 10.1093/alcalc/agu006
Vestergaard P. , Rejnmark L. , Mosekilde L. (2005) Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int. 77 1 - 8    DOI : 10.1007/s00223-004-0258-y
Sisask G. , Marsell R. , Sundgren-Andersson A. , Larsson S. , Nilsson O. , Ljunggren Ö. , Jonsson K. B. (2013) Rats treated with AZD2858, a GSK3 inhibitor, heal fractures rapidly without endochondral bone formation. Bone 54 126 - 132    DOI : 10.1016/j.bone.2013.01.019
Kawano Y. , Kypta R. (2003) Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116 2627 - 2634    DOI : 10.1242/jcs.00623
Bodine P. V. N. , Zhao W. , Kharode Y. P. , Bex F. J. , Lambert A. J. , Goad M. B. , Gaur T. , Stein G. S. , Lian J. B. , Komm B. S. (2004) The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol. 18 1222 - 1237    DOI : 10.1210/me.2003-0498
Gaur T. , Wixted J. J. , Hussain S. , O S. L. , Morgan E. F. , Ayers D. C. , Komm B. S. , Bodine P. V. , Stein G. S. , Lian J. B. (2009) Secreted frizzled related protein 1 is a target to improve fracture healing. J. Cell. Physiol. 220 174 - 181    DOI : 10.1002/jcp.21747
Semenov M. , Tamai K. , He X. (2005) Sost is a ligand for lrp5/lrp6 and a wnt signaling inhibitor. J. Biol. Chem. 280 26770 - 26775    DOI : 10.1074/jbc.M504308200
Li X. , Ominsky M. S. , Niu Q. T. , Sun N. , Daugherty B. , D'Agostin D. , Kurahara C. , Gao Y. , Cao J. , Gong J. , Asuncion F. , Barrero M. , Warmington K. , Dwyer D. , Stolina M. , Morony S. , Sarosi I. , Kostenuik P. J. , Lacey D. L. , Simonet W. S. , Ke H. Z. , Paszty C. (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res. 23 860 - 869    DOI : 10.1359/jbmr.080216
McGee-Lawrence M. E. , Ryan Z. C. , Carpio L. R. , Kakar S. , Westendorf J. J. , Kumar R. (2013) Sclerostin deficient mice rapidly heal bone defects by activating β-catenin and increasing intramembranous ossification. Biochem. Biophys. Res. Commun. 441 886 - 890    DOI : 10.1016/j.bbrc.2013.10.155
Li C. , Ominsky M. S. , Tan H. L. , Barrero M. , Niu Q. T. , Asuncion F. J. , Lee E. , Liu M. , Simonet W. S. , Paszty C. , Ke H. Z. (2011) Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone 49 1178 - 1185    DOI : 10.1016/j.bone.2011.08.012
Sarahrudi K. , Thomas A. , Albrecht C. , Aharinejad S. (2012) Strongly enhanced levels of sclerostin during human fracture healing. J. Orthop. Res. 30 1549 - 1555    DOI : 10.1002/jor.22129
Ominsky M. S. , Li C. , Li X. , Tan H. L. , Lee E. , Barrero M. , Asuncion F. J. , Dwyer D. , Han C. Y. , Vlasseros F. , Samadfam R. , Jolette J. , Smith S. Y. , Stolina M. , Lacey D. L. , Simonet W. S. , Paszty C. , Li G. , Ke H. Z. (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J. Bone Miner. Res. 26 1012 - 1021    DOI : 10.1002/jbmr.307
Virk M. S. , Alaee F. , Tang H. , Ominsky M. S. , Ke H. Z. , Lieberman J. R. (2013) Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J. Bone Joint. Surg. 95 694 - 701    DOI : 10.2106/JBJS.L.00285
Gamie Z. , Korres N. , Leonidou A. , Gray A. C. , Tsiridis E. (2012) Sclerostin monoclonal antibodies on bone metabolism and fracture healing. Exper. Opin. Inv. Drug 21 1523 - 1534    DOI : 10.1517/13543784.2012.713936
Jawad M. U. , Fritton K. E. , Ma T. , Ren P. G. , Goodman S. B. , Ke H. Z. , Babij P. , Genovese M. C. (2013) Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J. Orthop. Res. 31 155 - 163    DOI : 10.1002/jor.22186
Suen P. K. , He Y. X. , Chow D. H. K. , Huang L. , Li C. , Ke H. Z. , Ominsky M. S. , Qin L. (2014) Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J. Orthop. Res. 32 997 - 1005    DOI : 10.1002/jor.22636
Agholme F. , Li X. , Isaksson H. , Ke H. Z. , Aspenberg P. (2010) Sclerostin antibody treatment enhances metaphyseal bone healing in rats. J. Bone Miner. Res. 25 2412 - 2418    DOI : 10.1002/jbmr.135
Alaee F. , Virk M. S. , Tang H. , Sugiyama O. , Adams D. J. , Stolina M. , Dwyer D. , Ominsky M. S. , Ke H. Z. , Lieberman J. R. (2014) Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model. J. Orthop. Res. 32 197 - 203    DOI : 10.1002/jor.22498
Glinka A. , Wu W. , Delius H. , Monaghan A. P. , Blumenstock C. , Niehrs C. (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391 357 - 362    DOI : 10.1038/34848
Morvan F. , Boulukos K. , Clément-Lacroix P. , Roman S. R. , Suc-Royer I. , Vayssière B. , Ammann P. , Martin P. , Pinho S. , Pognonec P. , Mollat P. , Niehrs C. , Baron R. , Rawadi G. (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21 934 - 945    DOI : 10.1359/jbmr.060311
Li X. , Grisanti M. , Fan W. , Asuncion F. J. , Tan H. L. , Dwyer D. , Han C. Y. , Yu L. , Lee J. , Lee E. , Barrero M. , Kurimoto P. , Niu Q. T. , Geng Z. , Winters A. , Horan T. , Steavenson S. , Jacobsen F. , Chen Q. , Haldankar R. , Lavallee J. , Tipton B. , Daris M. , Sheng J. , Lu H. S. , Daris K. , Deshpande R. , Valente E. G. , Salimi-Moosavi H. , Kostenuik P. J. , Li J. , Liu M. , Li C. , Lacey D. L. , Simonet W. S. , Ke H. Z. , Babij P. , Stolina M. , Ominsky M. S. , Richards W. G. (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J. Bone Miner. Res. 26 2610 - 2621    DOI : 10.1002/jbmr.472
Loiselle A. E. , Lloyd S. A. J. , Paul E. M. , Lewis G. S. , Donahue H. J. (2013) Inhibition of GSK-3β rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice. PloS one 8 e81399 -    DOI : 10.1371/journal.pone.0081399
Loiselle A. E. , Paul E. M. , Lewis G. S. , Donahue H. J. (2013) Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J. Orthop. Res. 31 147 - 154    DOI : 10.1002/jor.22178
Aspenberg P. (2013) Annotation: Parathyroid hormone and fracture healing. Acta. Orthop. 84 4 - 6    DOI : 10.3109/17453674.2013.771301
Bodine P. V. N. , Seestaller-Wehr L. , Kharode Y. P. , Bex F. G. , Komm B. S. (2007) Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J. Cell. Physiol. 210 352 - 357    DOI : 10.1002/jcp.20834
Ronga M. , Fagetti A. , Canton G. , Paiusco E. , Surace M. F. , Cherubino P. (2013) Clinical applications of growth factors in bone injuries: experience with BMPs. Injury 44 S34 - S39    DOI : 10.1016/S0020-1383(13)70008-1
Bostrom M. P. , Lane J. M. , Berberian W. S. , Missri A. A. , Tomin E. , Weiland A. , Doty S. B. , Glaser D. , Rosen V. M. (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J. Orthop. Res. 13 357 - 367    DOI : 10.1002/jor.1100130309
Fourman M. S. , Borst E. W. , Bogner E. , Rozbruch R. , Fragomen A. T. (2014) Recombinant human BMP-2 increases the incidence and rate of healing in complex ankle arthrodesis. Clin. Orthop. Relat. Res. 472 732 - 739    DOI : 10.1007/s11999-013-3261-7
Lissenberg-Thunnissen S. N. , de Gorter D. J. , Sier C. F. , Schipper I. B. (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int. Orthop. 35 1271 - 1280    DOI : 10.1007/s00264-011-1301-z
Mbalaviele G. , Sheikh S. , Stains J. P. , Salazar V. S. , Cheng S. , Chen D. , Civitelli R. (2005) β−Catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J. Cell. Biochem. 94 403 - 418    DOI : 10.1002/jcb.20253
Chen Y. , Whetstone H. C. , Youn A. , Nadesan P. , Chow E. C. Y. , Lin A. C. , Alman B. A. (2007) β-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J. Biol. Chem. 282 526 - 533    DOI : 10.1074/jbc.M602700200
Fischer L. , Boland G. , Tuan R. S. (2002) Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J. Cell. Biochem. 84 816 - 831    DOI : 10.1002/jcb.10091
Lowik C. , Van Bezooijen R. L. (2006) Wnt signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Musculoskelet. Neuronal. Interact. 6 357 -
van Bezooijen R. L. , Svensson J. P. , Eefting D. , Visser A. , van der Horst G. , Karperien M. , Quax P. H. , Vrieling H. , Papapoulos S. E. , ten Dijke P. , Löwik C. W. (2007) Wnt but Not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Bone Miner. Res. 22 19 - 28    DOI : 10.1359/jbmr.061002
Yu Y.Y. , Lieu S. , Miclau T. , Colnot C. , Marcucio R. (2011) Effects of bone morphogenetic proteins on tgf-beta, wnt and bmp pathways during tibial fracture repair. FASEB J. (Meeting Abstract Supplement) 25 680 -