Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of “inside-out” signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals. [BMB Reports 2014; 47(12): 655-659]
INTRODUCTION
Integrins, heterodimeric type I transmembrane proteins consisting of α and β subunits, are a major class of receptors involved in adhesive events that control development and lead to pathologies such as cancer and thrombosis. Eighteeen integrin α subunits and 8 β subunits heterodimerize to form 24 different integrins
(1)
. Each subunit contains a single transmembrane domain (TMD) and a short cytoplasmic tail. Besides mediating cell adhesion, integrins transmit signals across the plasma membrane that regulate cell migration, cell survival and growth
(2)
. Conversely, signals from inside cells can increase the binding of integrin extracellular domains to ligands, a process operationally defined as integrin activation. Integrin activation encompasses both changes in affinity of individual integrins due to conformational changes and avidity increases due to integrin clustering
(3
-
5)
. Precise regulation of integrin activation is particularly important in controlling platelet aggregation through integrin αIIbβ3
(6)
. Rapid activation of this integrin at the site of a wound is required for hemostasis
(7)
; conversely inappropriate activation of αIIbβ3 can cause a platelet thrombus to occlude a blood vessel resulting in myocardial infarction or stroke. Here we will discuss recent progress in understanding how integrins are activated.
INTEGRIN TMD-THE CONDUIT FOR ALLOSTERIC REARRANGEMENTS
Changes in the conformation of integrin extracellular domains are responsible for the changes in integrin monomer affinity. These conformational changes have been the subject of several excellent reviews
(3
,
8
-
12)
and will not be discussed here. Similarly, clustering of integrins can enchance the binding of multivalent ligands and kindlins have recently emerged as major players in clustering
(13)
. The capacity of intracellular signals to change the conformation of the extracellular domain requires a remarkable transmemebrane allosteric change, a change that must traverse the integrin TMD. Truncation of the integrins at the C-termini of extracellular domains results in constitutively active integrins
(14)
, indicating that TMDs and cytoplasmic tails limit the activation state of integrins. Furthermore, many activating mutations, map to the α or β TMD
(15
-
18)
. Heterodimeric interactions between α and β TMDs and cytoplasmic tails have been observed by co-immunoprecipitation
(19)
, cysteine crosslinking
(20
,
21)
and by NMR
(22)
in phospholipid bicelles, but not in detergent micelles
(23)
. Importantly, mutations in TMDs that activate integrins invariably inhibit α and β TMD interactions
(19)
. Thus, physiological integrin activation is likely to require that intracellular signals disrupt integrin αβ TMD interactions.
The structure of the αIIbβ3 TMD complex in a phospholipid bicelle
(22)
revealed the basis of association of the α and β through two interaction interfaces. The αIIb TMD helix is short, straight and broken at Gly
991
, the first residue of the highly-conserved Gly-Phe-Phe-Lys-Arg (GFFKR) motif in the membrane proximal region of the α subunits. The two Phe residues of the αIIb GFFKR motif do not form a continuous helix but instead make a sharp turn toward β3 (
Fig. 1
). In this way, the hydrophobic side chains of those residues reside in the hydrophobic core of the lipid bilayer and stack against hydrophobic residues in the β3 TMD, particularly Trp
715
and Ile
719
. The turning of the membrane-proximal region of αIIb also permits the long-predicted
(24)
electrostatic interaction between αIIb Arg
995
and β3 Asp
723
by placing those residues in proximity (
Fig. 1
). The structure at the inner membrane interface is unique to and likely conserved in integrins and is termed the inner membrane clasp (IMC)
(22)
. The second interface involves helical packing centered on β3 Gly
708
and αIIb G
972
XXXG
976
motif at the outer membrane region and is termed the outer membrane clasp (OMC) (
Fig. 1
). Integrin β3 TMD makes a long and continuous helix with a 25° tilting angle to enable the multipoint interactions with αIIb and accommodate the extra hydrophobic residues in the β3 TMD.
Structure of integrin αIIbβ3 TMD (ribbon view; αIIb in red and β3 in blue. From PDB 2K9J) showing the two interaction interfaces. Right, outer membrane clasp (OMC) illustrating the helical packing involving αIIb Gly 702 and 706. Left, inner membrane clasp (IMC) showing the electrostatic interaction between αIIb Arg995 and β3 Asp723. Also depicted are the hydrophobic interactions of αIIb Phe992,933 with the β3 TMD. Adapted from reference (22).
As noted above, an important feature of the structure of the αIIbβ3 TMD dimer is that the helical β TMD must be precisely tilted to maintain simultaneous formation of the OMC and IMC. Precise tilt is maintained via β3 Lys
716
whose alpha carbon resides in the hydrophobic region of the lipid bilayer but its positively charged ε-NH
3
+
is predicted to snorkel into the negatively charged phosphate head group region
(25)
. Mutation of Lys
716
any residue other than Arg (which also contains a snorkeling basic side chain) reduces α-β TMD interactions and dramatically increases integrin activation
(25)
. The effects of Lys
716
mutation can be ameliorated by breaking the continuous β TMD helix into two halves by introduction of a Pro mutation (A711P). The Pro mutation, introduces a flexible hinge that partially decouples the tilting angles of inner and outer helices favoring simultaneous formation of OMC and IMC
(25)
.
TALIN “TILTS” THE INTEGRIN β TMD TO INDUCE ACTIVATION
Talin regulates integrin affinity and provides a mechanical link between integrins and the actin cytoskeleton. Talin comprises a 50-kDa N-terminal FERM domain (talin head domain or THD) that contains a high-affinity binding site for integrin β tails and a 220-kDa rod domain that contains multiple binding sites for actin and vinculin
(26)
. The THD is further divided into F0, F1, F2 and F3 subdomains
(26
,
27)
. The F3 subdomain, contains the major integrin integrin β tail binding site
(28
,
29)
. The essential role of talin in regulating integrin affinity has been well documented in model cells
(29
-
32)
, transgenic mice
(33
-
36)
and reconstituted systems with purified proteins
(37)
. In
in vitro
systems, recombinant THD alone is sufficient to activate αIIbβ3 reconstituted in either liposomes or phospholipid nanodiscs, and activation is associated with a shift towards an αIIbβ3 extended conformation
(37)
.
We now have considerable insight into how talin induces this allosteric rearrangement in integrins. Talin binds to two sites on integrin β tails: a strong binding site centered around the first NPxY motif that contributes most of the binding free energy and a weaker membrane proximal (MP) binding site
(38)
. In addition, THD also binds to negatively charged phospholipids via positively-charged residues
(38
-
40)
. The weak interaction with the MP region has two important effects: 1) it brings talin Lys
324
close to Asp
723
of the β3 tail, thus competing for the Arg
995
-Asp
723
electrostatic interactions in IMC
(40)
; 2) it stabilizes α-helical structure of the β MP region and to form a continuous helix with the β3 TMD
(38
,
40)
. As the simultaneous interaction with integrin β tails and phospholipids, can change the tilt angle of the β3 MP tail and thus of the contiguous β3 TMD (
Fig. 2
)
(41)
. Such talin-induced motion was demonstrated by increased fluorescence of solvatochromic dyes attached to the N- or C-terminii of the β3 TMD in the presence of THD
(41)
and is further supported by molecular dynamic simulations
(42)
. The change in tilting angle destabilizes α-β TMD interactions and shifts the equilibrium towards an activated integrin conformation. In further support of this model, introducing a flexible proline kink in the middle of the β3 TMD blocks THD-induced tilting of the outer membrane segment without blocking tilting of the inner membrane segment (
Fig. 3
). Integrins bearing this mutation are remarkably resistant to talin induced integrin activation
(41)
.
Talin changes the topology of the β3 TMD. A peptide containing the β3 TMD and cytoplasmic domain was labeled with environment sensitive bimanes at the outer edge of the TMD (N terminal labeling, Leu694) or at the TMD cytosol interface (C-terminal labeling, Ile721). The peptides were individually embedded in phospholipid nanodiscs and increasing concentrations of talin head domain (THD) were added and bimanes emission spectra were recorded. The increased fluorescence indicates that both sides of the β3 TMD were in a less polar environment suggesting that THD increased the tilting of the β3 TMD. Adapted from reference (41).
A proline kink prevents transmission of altered tilt across the β3 TMD. In the left two panels The experimental design was identical to that in Fig. 2 and depicts the talin-induced increased embedding at both the inner (where THD binds) and outer edges of the TMD. Introduction of a flexible kink by β3 (A711P) mutation (right two panels) prevents the transmission of increased embedding of the inner TMD to the outer region. Adapted from reference (41).
SUMMARY AND CONCLUSIONS
Integrin activation was first observed in 1978 in integrin αIIbβ3 and it has proved to be a conserved property of β1, β2, and β3 integrins. As summarized here, our understanding of this unique form of transmembrane signal transduction has moved from a black box in which agonists, such as thrombin, caused a change in the affinity of integrin αIIbβ3. Today, cell biological and reverse genetic experiments have verified that talin binding to the integrin β cytoplasmic domain is a final common step in activation. Structural studies have revealed how two binding interfaces of talin with the integrin in combination with talin membrane binding sites can effect this form of transmembrane allostery. Studies have also revealed unique features of the heterodimeric integrin TMD that form a stable yet dynamic αβ TMD interaction that enables transmission of the activation signal across the phospholipid bilayer. The lessons learned in studying integrin transmembrane signaling, such as the importance of snorkeling basic residues in maintaining TMD topology, are likely to pertain to other examples of transmembrane signaling through transmembrane receptors.
Shattil S. J.
,
Kim C.
,
Ginsberg M. H.
(2010)
The final steps of integrin activation: the end game.
Nat. Rev. Mol. Cell. Biol.
11
288 -
300
DOI : 10.1038/nrm2871
Shattil S. J.
,
Newman P. J.
(2004)
Integrins: dynamic scaffolds for adhesion and signaling in platelets.
Blood
104
1606 -
1615
DOI : 10.1182/blood-2004-04-1257
Wagner C. L.
,
Mascelli M. A.
,
Neblock D. S.
,
Weisman H. F.
,
Coller B. S.
,
Jordan R. E.
(1996)
Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets.
Blood
88
907 -
914
Shattil S. J.
,
Kashiwagi H.
,
Pampori N.
(1998)
Integrin signaling: the platelet paradigm.
Blood
91
2645 -
2657
Arnaout M. A.
,
Goodman S. L.
,
Xiong J. P.
(2007)
Structure and mechanics of integrin-based cell adhesion.
Curr. Opin. Cell. Biol.
19
495 -
507
DOI : 10.1016/j.ceb.2007.08.002
Ye F.
,
Petrich B. G.
,
Anekal P.
,
Lefort C. T.
,
Kasirer-Friede A.
,
Shattil S. J.
,
Ruppert R.
,
Moser M.
,
Fässler R.
,
Ginsberg M. H.
(2013)
The Mechanism of Kindlin-mediated Activation of Integrin αIIbβ3.
Curr. Biol.
23
2288 -
2295
DOI : 10.1016/j.cub.2013.09.050
Mehta R. J.
,
Diefenbach B.
,
Brown A.
,
Cullen E.
,
Jonczyk A.
,
Güssow D.
,
Luckenbach G. A.
,
Goodman S. L.
(1998)
Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor?
Biochem. J.
330
861 -
869
Partridge A. W.
,
Liu S.
,
Kim S.
,
Bowie J. U.
,
Ginsberg M. H.
(2005)
Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state.
J. Biol. Chem.
280
7294 -
7300
DOI : 10.1074/jbc.M412701200
Luo B. H.
,
Carman C. V.
,
Takagi J.
,
Springer T. A.
(2005)
Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering.
Proc. Natl. Acad. Sci. U. S. A.
102
3679 -
3684
DOI : 10.1073/pnas.0409440102
Li W.
,
Metcalf D. G.
,
Gorelik R.
,
Li R.
,
Mitra N.
,
Nanda V.
,
Law P. B.
,
Lear J. D.
,
Degrado W. F.
,
Bennett J. S.
(2005)
A push-pull mechanism for regulating integrin function.
Proc. Natl. Acad. Sci. U. S. A.
102
1424 -
1429
DOI : 10.1073/pnas.0409334102
Li R.
,
Mitra N.
,
Gratkowski H.
,
Vilaire G.
,
Litvinov R.
,
Nagasami C.
,
Weisel J. W.
,
Lear J. D.
,
DeGrado W. F.
,
Bennett J. S.
(2003)
Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations.
Science
300
795 -
798
DOI : 10.1126/science.1079441
Kim C.
,
Lau T. L.
,
Ulmer T. S.
,
Ginsberg M. H.
(2009)
Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation.
Blood
113
4747 -
4753
DOI : 10.1182/blood-2008-10-186551
Zhu J.
,
Luo B. H.
,
Barth P.
,
Schonbrun J.
,
Baker D.
,
Springer T. A.
(2009)
The structure of a receptor with two associating transmembrane domains on the cell surface: integrin alphaIIbbeta3.
Mol. Cell
34
234 -
249
DOI : 10.1016/j.molcel.2009.02.022
Luo B. H.
,
Springer T. A.
,
Takagi J.
(2004)
A specific interface between integrin transmembrane helices and affinity for ligand.
PLoS Biol.
2
e153 -
DOI : 10.1371/journal.pbio.0020153
Lau T. L.
,
Kim C.
,
Ginsberg M. H.
,
Ulmer T. S.
(2009)
The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling.
EMBO J.
28
1351 -
1361
DOI : 10.1038/emboj.2009.63
Li R.
,
Babu C. R.
,
Lear J. D.
,
Wand A. J.
,
Bennett J. S.
,
DeGrado W. F.
(2001)
Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains.
Proc. Natl. Acad. Sci. U. S. A.
98
12462 -
12467
DOI : 10.1073/pnas.221463098
Hughes P. E.
,
Diaz-Gonzalez F.
,
Leong L.
,
Wu C.
,
McDonald J. A.
,
Shattil S. J.
,
Ginsberg M. H.
(1996)
Breaking the integrin hinge: a defined structural constraint regulates integrin signaling.
J. Biol. Chem.
271
6571 -
6574
DOI : 10.1074/jbc.271.12.6571
Kim C.
,
Schmidt T.
,
Cho E. G.
,
Ye F.
,
Ulmer T. S.
,
Ginsberg M. H.
(2012)
Basic amino-acid side chains regulate transmembrane integrin signalling.
Nature
481
209 -
213
DOI : 10.1038/nature10697
Elliott P. R.
,
Goult B. T.
,
Kopp P. M.
,
Bate N.
,
Grossmann J. G.
,
Roberts G. C.
,
Critchley D. R.
,
Barsukov I. L.
(2010)
The Structure of the talin head reveals a novel extended conformation of the FERM domain.
Structure
18
1289 -
1299
DOI : 10.1016/j.str.2010.07.011
Calderwood D. A.
,
Fujioka Y.
,
de Pereda J. M.
,
García-Alvarez B.
,
Nakamoto T.
,
Margolis B.
,
McGlade C. J.
,
Liddington R. C.
,
Ginsberg M. H.
(2003)
Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling.
Proc. Natl. Acad. Sci. U. S. A.
100
2272 -
2277
DOI : 10.1073/pnas.262791999
Calderwood D. A.
,
Yan B.
,
de Pereda J. M.
,
Alvarez B. G.
,
Fujioka Y.
,
Liddington R. C.
,
Ginsberg M. H.
(2002)
The phosphotyrosine binding-like domain of talin activates integrins.
J. Biol. Chem.
277
21749 -
21758
DOI : 10.1074/jbc.M111996200
Lee H. S.
,
Lim C. J.
,
Puzon-McLaughlin W.
,
Shattil S. J.
,
Ginsberg M. H.
(2009)
RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences.
J. Biol. Chem.
284
5119 -
5127
DOI : 10.1074/jbc.M807117200
Han J.
,
Lim C. J.
,
Watanabe N.
,
Soriani A.
,
Ratnikov B.
,
Calderwood D. A.
,
Puzon-McLaughlin W.
,
Lafuente E. M.
,
Boussiotis V. A.
,
Shattil S. J.
,
Ginsberg M. H.
(2006)
Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3.
Curr. Biol.
16
1796 -
1806
DOI : 10.1016/j.cub.2006.08.035
Calderwood D. A.
,
Zent R.
,
Grant R.
,
Rees D. J.
,
Hynes R. O.
,
Ginsberg M. H.
(1999)
The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation.
J. Biol. Chem.
274
28071 -
28074
DOI : 10.1074/jbc.274.40.28071
Petrich B. G.
,
Marchese P.
,
Ruggeri Z. M.
,
Spiess S.
,
Weichert R. A.
,
Ye F.
,
Tiedt R.
,
Skoda R. C.
,
Monkley S. J.
,
Critchley D. R.
,
Ginsberg M. H.
(2007)
Talin is required for integrin-mediated platelet function in hemostasis and thrombosis.
J. Exp. Med.
204
3103 -
3111
DOI : 10.1084/jem.20071800
Nieswandt B.
,
Moser M.
,
Pleines I.
,
Varga-Szabo D.
,
Monkley S.
,
Critchley D.
,
Fässler R.
(2007)
Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo.
J. Exp. Med.
204
3113 -
3118
DOI : 10.1084/jem.20071827
Petrich B. G.
,
Fogelstrand P.
,
Partridge A. W.
,
Yousefi N.
,
Ablooglu A. J.
,
Shattil S. J.
,
Ginsberg M. H.
(2007)
The antithrombotic potential of selective blockade of talin-dependent integrin alpha IIb beta 3 (platelet GPIIb-IIIa) activation.
J. Clin. Invest.
117
2250 -
2259
DOI : 10.1172/JCI31024
Haling J. R.
,
Monkley S. J.
,
Critchley D. R.
,
Petrich B. G.
(2011)
Talin-dependent integrin activation is required for fibrin clot retraction by platelets.
Blood
117
1719 -
1722
DOI : 10.1182/blood-2010-09-305433
Ye F.
,
Hu G.
,
Taylor D.
,
Ratnikov B.
,
Bobkov A. A.
,
McLean M. A.
,
Sligar S. G.
,
Taylor K. A.
,
Ginsberg M. H.
(2010)
Recreation of the terminal events in physiological integrin activation.
J. Cell. Biol.
188
157 -
173
DOI : 10.1083/jcb.200908045
Wegener K. L.
,
Partridge A. W.
,
Han J.
,
Pickford A. R.
,
Liddington R. C.
,
Ginsberg M. H.
,
Campbell I. D.
(2007)
Structural basis of integrin activation by talin.
Cell
128
171 -
182
DOI : 10.1016/j.cell.2006.10.048
Goult B. T.
,
Bouaouina M.
,
Elliott P. R.
,
Bate N.
,
Patel B.
,
Gingras A. R.
,
Grossmann J. G.
,
Roberts G. C.
,
Calderwood D. A.
,
Critchley D. R.
,
Barsukov I. L.
(2010)
Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation.
EMBO J.
29
1069 -
1080
DOI : 10.1038/emboj.2010.4
Anthis N. J.
,
Wegener K. L.
,
Ye F.
,
Kim C.
,
Goult B. T.
,
Lowe E. D.
,
Vakonakis I.
,
Bate N.
,
Critchley D. R.
,
Ginsberg M. H.
,
Campbell I. D.
(2009)
The structure of an integrin/talin complex reveals the basis of inside-out signal transduction.
EMBO J.
28
3623 -
3632
DOI : 10.1038/emboj.2009.287
Kim C.
,
Ye F.
,
Hu X.
,
Ginsberg M. H.
(2012)
Talin activates integrins by altering the topology of the beta transmembrane domain.
J. Cell. Biol.
197
605 -
611
DOI : 10.1083/jcb.201112141
Kalli A. C.
,
Wegener K. L.
,
Goult B. T.
,
Anthis N. J.
,
Campbell I. D.
,
Sansom M. S.
(2010)
The structure of the talin/integrin complex at a lipid bilayer: an NMR and MD simulation study.
Structure
18
1280 -
1288
DOI : 10.1016/j.str.2010.07.012