The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases
The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases
BMB Reports. 2013. Oct, 46(10): 479-483
Copyright © 2013, Korean Society for Biochemistry and Molecular Biology
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : June 24, 2013
  • Accepted : June 24, 2013
  • Published : October 31, 2013
Export by style
Cited by
About the Authors
Youngkyun, Lee

The balance between osteoblast-dependent bone formation and osteoclast-dependent bone resorption maintains bone homeostasis. In inflammatory conditions, this balance shifts toward bone resorption, causing osteolytic bone lesions observed in rheumatoid arthritis and periodontitis. A recently discovered family of cytokine IL-17 is widely reported to mediate diverse inflammatory processes. During the last decade, novel roles for IL-17 in skeletal homeostasis have been discovered indicating the potential importance of this cytokine in bone metabolism. This review will summarize and discuss the involvement of IL-17 during bone homeostasis in both physiologic and pathologic conditions. A better understanding of the role of IL-17 in skeletal systems warrants an advance in bone biology, as well as development of therapeutic strategies against bone-lytic diseases, such as rheumatoid arthritis and periodontitis. [BMB Reports 2013; 46(10): 479-483]
IL-17 is a recently discovered family of cytokines composed of six members (1) . IL-17A was cloned in T cell hybridoma, as the first member of the new class of cytokine and generally entitled as IL-17 (2) . Additional isoforms homologous to IL-17A designated as IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F were discovered afterwards (3) . IL-17 is produced by a specialized subset of CD4+ T cells, called Th17 cells (4) . It is likely that the primary function of Th17 cells is to eliminate pathogens and IL-17 is a potent inducer of inflammation. The receptors for IL-17, IL-17R, constitute a distinct family of cytokine receptor (3) . In contrast to IL-17, IL17 receptor expression is ubiquitous, suggesting a possibility that IL-17 might affect the function of a wide variety of target cells. Until now, five members including IL-17RA, IL-17RB, IL-17RC, IL-17RD, and IL-17RE had been identified. IL-17RA is the founding member of this receptor family and binds to IL-17A (5) . The ligand-receptor specificity of IL-17-IL-17R interaction is yet to be fully unveiled. However, it has been demonstrated that IL-17RA and IL-17RC bind to IL-17A and IL-17F (6 , 7) .
It has been shown that IL-17 can induce a wide variety of pro-inflammatory mediators in various types of cells involved in tissue damage, including macrophages. For example, IL-17 promoted the production of cytokines, such as IL-6, IL-1β, and TNF-α in mouse Kupffer cells (8) . IL-17 stimulated the production of IL-6 and TNF-α in human macrophages obtained from peripheral blood (9) . The increase of IL-6 following IL-17 treatment has also been reported in mouse microglia (10) . Similar induction of IL-6 was also reported in IL-17-stimulated human gingival fibroblasts (11) . Human peripheral blood mononuclear cell-derived macrophages responded to IL-17 to greatly enhance the production of IL-1β and TNF-α (11 , 12) . IL-17 is also known to trigger chemokine production. The most frequently reported chemokine instigated by IL-17 is IL-8, which was observed in human gingival fibroblasts (11 , 13) and human macrophages (9) . In mouse microglia, IL-17 also induced CXCL2 production (10) . In addition, IL-17 significantly elevated the expression of CCL2 in human macrophages (14) , CCL4 and CCL5 in mouse macrophages (15) , and CCL20 in human gingival fibroblasts (16) . IL-17 stimulated the production of prostaglandin E2 in MC3T3-E1 pre-osteoblasts (17 , 18) . Finally, IL-17 induced nitric oxide eneration in MC3T3-E1 cells (19) and in mouse astrocytes (20) .
Bone homeostasis is intricately maintained by the coordination of bone formation by osteoblasts and bone resorption by osteoclasts. The role of IL-17 in the process of bone remodeling was first demonstrated in a study performed by Kotake et al . that showed IL-17, abundant in synovial fluids of rheumatoid arthritis patients, stimulated osteoclastogenesis in an osteo-blast-dependent manner (21) . Numerous following studies corroborated the pro-osteoclastogenic role of IL-17 both in vitro and in vivo . IL-17 stimulated bone resorption in combination with TNF-α in fetal mouse long bones (22) . However, whether IL-17 is directly working on osteoclast precursors or indirectly affecting osteoclast differentiation through stromal cells had not been clarified until Sato et al . revealed the role of Th17 cells on osteoclastogenesis (23) . In an effort to dissect the role of T cells in arthritic bone destruction, the authors discovered that IL-17 only stimulated the osteoclastogenesis in a co-culture of mouse osteoclasts and bone marrow macrophages (osteoclast precursors), while having no effect on the differentiation of a macrophage-only culture, suggesting that IL-17 induces the expression of RANKL (the osteoclast differentiation factor) in osteoclast-supporting cells, such as osteoblasts. Yet, the direct effect of IL-17 on osteoclast precursors is still controversial. IL-17 induced osteoclast differentiation from human monocytes in the absence of osteoblasts (24) . In contrast, Kitami et al . reported that IL-17 inhibited osteoclast differentiation from RAW264.7 cells (25) . Recently, it was reported that IL-17 inhibits osteoclastogenesis in mouse osteoblast-bone marrow cell co-culture by inducing the release of GM-CSF, an anti-osteoclastogenesis cytokine (26) . While the exact role of IL-17 in osteoclastogenesis still needs to be fully unveiled, it is likely that the effect of IL-17 on osteoclast differentiation is largely affected by multiple factors, such as the source of the osteoclast precursors, species, and culture conditions.
 Little is known about the role of IL-17 in osteoblast differentiation and bone formation. Huang et al . published that IL-17 stimulated the formation of the colony-forming unit-fibroblast (CFU-f) from both human and mouse bone marrow stromal cells, suggesting that IL-17 is a growth factor for mesenchymal stem cells (27) . Indeed, the CFU-f formation induced by CD4+ T cells was significantly reduced after bone marrow transplant in IL-17RA-deficient recipient mice. In line with these observations, IL-17 enhanced the proliferation, as well as osteogenic differentiation of human mesenchymal stem cells (28) . The IL-17-induced mesenchymal stem cell proliferation was dependent upon the generation of reactive oxygen species (ROS) mediated by NADPH oxidase 1 downstream of TRAF6 and Act1. Then, ROS activated the MEK-ERK pathway to stimulate mesenchymal stem cell proliferation. Importantly, IL-17 induced the expression of M-CSF and RANKL, crucial cytokines required for osteoclast survival and differentiation, potentiating the role for IL-17 in bone remodeling. IL-17F also stimulated osteogenic differentiation of MC3T3-E1 mouse pre-osteoblast cells, as well as primary mouse mesenchymal stromal cells (29) . In mouse myoblast cell line C2C12, IL-17 promoted osteogenic differentiation, while suppressing myogenic differentiation (30) . Interestingly, IL-17 has been widely accepted to inhibit adipogenesis (31) , suggesting that IL-17 may steer mesenchymal stem cells into an osteogenic fate ( Fig. 1 ).
PPT Slide
Lager Image
The role of IL-17 in bone remodeling. IL-17, produced by Th17 cells, stimulate the production of MCSF and RANKL in osteoblasts and mesenchymal stem cells. These factors enhance the formation of bone-resorbing osteoclasts from monocyte/macrophage precursors. IL-17 not only accelerates the osteogenic differentiation of mesenchymal stem cells but also hampers adipogenic differentiation. Th17 cells are also RANKL-expressing T cells that support osteoclastogenesis.
Since the first demonstration that IL-17 is crucially involved in bone resorption in rheumatoid arthritis patients (21) , scores of papers during the last decade confirmed the role of IL-17. The treatment of mice with anti-IL-17 antibody dramatically reduced not only the joint inflammation but also cartilage and bone destruction in a collagen-induced arthritis model (32) . The neutralization of endogenous IL-17 also significantly reduced bone erosion in a mouse methylated bovine serum albumin-induced experimental arthritis model by reducing the levels of RANKL, IL-1, and TNF-α (33) . By the same token, IL-17RA-deficient mice were clearly protected from cartilage destruction following arthritis induction by bacterial cell wall challenge (34) . These results strongly suggested that blocking the IL-17 signaling could be a strategy against rheumatoid arthritis. Indeed, Genovese et al . published that a humanized anti-IL-17 antibody successfully reduced the joint scores in a rheumatoid arthritis clinical study (35) . The usefulness of the anti-IL-17 therapy was further supported by recent studies that revealed the bone-protective effect of IL-17 blockade (36 - 38) . The aforementioned bone-destructive role of IL-17 is largely mediated by enhanced RANKL production by osteoblasts (21) , synovial cells (33 , 39) , and mesenchymal stem cells (28) . In addition, the IL-17-producing Th17 cells were proven to be the RANKL-expressing T cells (23) . In a recently published article, Kikuta et al . demonstrated that Th17 cells could activate mature osteoclasts into a bone-resorbing state (40) . Thus it is likely that Th17 cells in rheumatoid synovium, not only stimulate osteoclast differentiation by M-CSF and RANKL production in osteoclast-supporting cells via IL-17 secretion, but also directly activate osteoclast bone resorption via cell-cell contact as RANKL-producing T cells.
Periodontitis is a panel of inflammatory diseases of the tissues surrounding teeth that leads to the destruction of alveolar bone. The bone loss associated with periodontitis is also mediated by osteoclasts (41) . In 2003, Oda et al . discovered that the surface antigens of Porphyromonas gingivalis , a gram-negative bacterium that causes periodontitis, significantly induced IL-17 expression in peripheral blood mononuclear cells (42) . Indeed, IL-17 mRNA was readily detected in tissue samples from periodontitis patients (43) . The increased amount of IL-17 protein was also detected in gingival crevicular fluid and cellular cultures of gingival tissues from periodontitis patients (44) . These early studies suggested that IL-17 might be also linked to periodontal diseases in a similar fashion observed in rheumatoid arthritis. However, Yu et al . reported that IL-17RAdeficient mice exhibited more severe alveolar bone loss upon challenge by P. gingivalis , suggesting a bone-protective role for IL-17 signaling (45) . The authors hypothesized that the IL-17 receptor-dependent signals are required for the neutrophil- mediated clearance of periodontal pathogens. Whether IL-17 stimulates bone destruction or protects bone in periodontitis is still an open question, although increasing evidence indicates that increased IL-17 expression in both chronic and aggressive periodontitis (46 - 48) .
A newly identified family of cytokine IL-17 accelerates bone metabolism by stimulating osteogenic differentiation of mesenchymal stem cells and osteoblasts and promoting pro-osteoclastogenic molecules on these cells. In conjunction with the widely accepted pro-inflammatory role, numerous reports indicate that IL-17 is involved in inflammatory bone diseases, such as rheumatoid arthritis. Indeed anti-IL-17 therapy produced promising results in clinical trials among the rheumatoid arthritis patients. Several recent reports discovered potential association between IL-17 and periodontitis, although it is controversial whether IL-17 is a bone-protective or bone-destroying cytokine in alveolar bone during periodontitis. A better understanding on the physiologic, as well as pathologic role, for IL-17 in bone metabolism will provide greater insight into the osteolytic process during periodontitis and ensure future development of therapies against this bone-destructive disease.
This research was supported by the Kyungpook National University research fund, 2012.
Moseley T. A. , Haudenschild D. R. , Rose L. , Reddi A. H. (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 14 155 - 174    DOI : 10.1016/S1359-6101(03)00002-9
Rouvier E. , Luciani M. F. , Mattei M. G. , Denizot F. , Golstein P. (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150 5445 - 5456
Witowski J. , Ksiazek K. , Jorres A. (2004) Interleukin-17: a mediator of inflammatory responses. Cell Mol. Life Sci. 61 567 - 579    DOI : 10.1007/s00018-003-3228-z
Korn T. , Bettelli E. , Oukka M. , Kuchroo V. K. (2009) IL-17 and Th17 Cells. Annu. Rev. Immunol. 27 485 - 517    DOI : 10.1146/annurev.immunol.021908.132710
Yao Z. , Fanslow W. C. , Seldin M. F. , Rousseau A. M. , Painter S. L. , Comeau M. R. , Cohen J. I. , Spriggs M.K. (1995) Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3 811 - 821    DOI : 10.1016/1074-7613(95)90070-5
Kuestner R. E. , Taft D. W. , Haran A. , Brandt C. S. , Brender T. , Lum K. , Harder B. , Okada S , Ostrander C.D. , Kreindler J. L. , Aujla S. J. , Reardon B. , Moore M. , Shea P. , Schreckhise R. , Bukowski T. R. , Presnell S. , Guerra-Lewis P. , Parrish-Novak J. , Ellsworth J. L. , Jaspers S. , Lewis K. E. , Appleby M. , Kolls J. K. , Rixon M. , West J. W. , Gao Z. , Levin S. D. (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J. Immunol. 179 5462 - 5473
Toy D. , Kugler D. , Wolfson M. , Vanden Bos T. , Gurgel J. , Derry J. , Tocker J. , Peschon J. (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177 36 - 39
Meng F. , Wang K. , Aoyama T. , Grivennikov S. I. , Paik Y. , Scholten D. , Cong M. , Iwaisako K. , Liu X. , Zhang M. , Osterreicher C. H. , Stickel F. , Ley K. , Brenner D. A. , Kisseleva T. (2012) Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143 765 - 776    DOI : 10.1053/j.gastro.2012.05.049
Gu Y. , Hu X. , Liu C. , Qv X. , Xu C. (2008) Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia. Br. J. Haematol. 142 109 - 114    DOI : 10.1111/j.1365-2141.2008.07161.x
Kawanokuchi J. , Shimizu K. , Nitta A. , Yamada K. , Mizuno T. , Takeuchi H. , Suzumura A. (2008) Production and functions of IL-17 in microglia. J. Neuroimmunol. 194 54 - 61    DOI : 10.1016/j.jneuroim.2007.11.006
Beklen A. , Ainola M. , Hukkanen M. , Gurgan C. , Sorsa T. , Konttinen Y. T. (2007) MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. J. Dent. Res. 86 347 - 351    DOI : 10.1177/154405910708600409
Jovanovic D. V. , Di Battista J. A. , Martel-Pelletier J. , Jolicoeur F. C. , He Y. , Zhang M. , Mineau F. , Pelletier J. P. (1998) IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J. Immunol. 160 3513 - 3521
Mahanonda R. , Jitprasertwong P. , Sa-Ard-Iam N. , Rerkyen P. , Charatkulangkun O. , Jansisyanont P. , Nisapakultorn K. , Yongvanichit K. , Pichyangkul S. (2008) Effects of IL-17 on human gingival fibroblasts. J. Dent. Res. 87 267 - 272    DOI : 10.1177/154405910808700314
Shahrara S. , Pickens S. R. , Mandelin A. M. 2nd , Karpus W. J. , Huang Q. , Kolls J. K. , Pope R. M. (2010) IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction. J. Immunol. 184 4479 - 4487    DOI : 10.4049/jimmunol.0901942
Barin J. G. , Baldeviano G. C. , Talor M. V. , Wu L. , Ong S. , Quader F. , Chen P. , Zheng D. , Caturegli P. , Rose N. R. , Cihakova D. (2012) Macrophages participate in IL-17-mediated inflammation. Eur. J. Immunol. 42 726 - 736    DOI : 10.1002/eji.201141737
Hosokawa Y. , Hosokawa I. , Ozaki K. , Nakanishi T. , Nakae H. , Matsuo T. (2009) Catechins inhibit CCL20 production in IL-17A-stimulated human gingival fibroblasts. Cell. Physiol. Biochem. 24 391 - 396    DOI : 10.1159/000257431
Zhang F. , Tanaka H. , Kawato T. , Kitami S. , Nakai K. , Motohashi M. , Suzuki N. , Wang C. L. , Ochiai K. , Isokawa K. , Maeno M. (2011) Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie 93 296 - 305    DOI : 10.1016/j.biochi.2010.10.001
Zhang F. , Koyama Y. , Sanuki R. , Mitsui N. , Suzuki N. , Kimura A. , Nakajima A. , Shimizu N. , Maeno M. (2010) IL-17A stimulates the expression of inflammatory cytokines via celecoxib-blocked prostaglandin in MC3T3-E1 cells. Arch. Oral Biol. 55 679 - 688    DOI : 10.1016/j.archoralbio.2010.06.003
Van Bezooijen R. L. , Papapoulos S. E. , Lowik C. W. (2001) Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: is there dependency on nuclear factor-kappaB and receptor activator of nuclear factor kappaB (RANK)/RANK ligand signaling? Bone 28 378 - 386    DOI : 10.1016/S8756-3282(00)00457-9
Trajkovic V. , Stosic-Grujicic S. , Samardzic T. , Markovic M. , Miljkovic D. , Ramic Z. , Mostarica Stojkovic M. (2001) Interleukin-17 stimulates inducible nitric oxide synthase activation in rodent astrocytes. J. Neuroimmunol. 119 183 - 191    DOI : 10.1016/S0165-5728(01)00391-5
Kotake S. , Udagawa N. , Takahashi N. , Matsuzaki K. , Itoh K. , Ishiyama S. , Saito S. , Inoue K. , Kamatani N. , Gillespie M. T. , Martin T. J. , Suda T. (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103 1345 - 1352    DOI : 10.1172/JCI5703
Van bezooijen R. L. , Farih-Sips H. C. , Papapoulos S. E. , Lowik C. W. (1999) Interleukin-17: A new bone acting cytokine in vitro. J. Bone Miner. Res. 14 1513 - 1521    DOI : 10.1359/jbmr.1999.14.9.1513
Sato K. , Suematsu A. , Okamoto K. , Yamaguchi A. , Morishita Y. , Kadono Y. , Tanaka S. , Kodama T. , Akira S. , Iwakura Y. , Cua D. J. , Takayanagi H. (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203 2673 - 2682    DOI : 10.1084/jem.20061775
Yago T. , Nanke Y. , Ichikawa N. , Kobashigawa T. , Mogi M. , Kamatani N. , Kotake S. (2009) IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J. Cell Biochem. 108 947 - 955    DOI : 10.1002/jcb.22326
Kitami S. , Tanaka H. , Kawato T. , Tanabe N. , Katono-Tani T. , Zhang F. , Suzuki N. , Yonehara Y. , Maeno M. (2010) IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells. Biochimie 92 398 - 404    DOI : 10.1016/j.biochi.2009.12.011
Balani D. , Aeberli D. , Hofstetter W. , Seitz M. (2013) Interleukin-17A stimulates granulocyte-macrophage colony-stimulating factor release by murine osteoblasts in the presence of 1,25-dihydroxyvitamin D(3) and inhibits murine osteoclast development in vitro. Arthritis Rheum. 65 436 - 446    DOI : 10.1002/art.37762
Huang W. , La Russa V. , Alzoubi A. , Schwarzenberger P. (2006) Interleukin-17A: a T-cell-derived growth factor for murine and human mesenchymal stem cells. Stem Cells (Dayton, Ohio) 24 1512 - 1518    DOI : 10.1634/stemcells.2005-0156
Huang H. , Kim H. J. , Chang E. J. , Lee Z. H. , Hwang S. J. , Kim H. M. , Lee Y. , Kim H. H. (2009) IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell. Death. Differ. 16 1332 - 1343    DOI : 10.1038/cdd.2009.74
Nam D. , Mau E. , Wang Y. , Wrigh D. , Silkstone D. , Whetstone H. , Whyne C. , Alman B. (2012) T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PloS One 7 e40044 -    DOI : 10.1371/journal.pone.0040044
Kocic J. , Santibanez J. F. , Krstic A. , Mojsilovic S. , Dordevic I. O. , Trivanovic D. , Ilic V. , Bugarski D. (2012) Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2. Biochim. Biophys. Acta. 1823 838 - 849    DOI : 10.1016/j.bbamcr.2012.01.001
Ahmed M. , Gaffen S. L. (2010) IL-17 in obesity and adipogenesis. Cytokine. Growth Factor Rev. 21 449 - 453    DOI : 10.1016/j.cytogfr.2010.10.005
Lubberts E. , Koenders M. I. , Oppers-Walgreen B. , van den Bersselaar L. , Coenen-de Roo C. J. , Joosten L. A. , van den Berg W. B. (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 50 650 - 659    DOI : 10.1002/art.20001
Koenders M. I. , Lubberts E. , Oppers-Walgreen B. , van den Bersselaar L. , Helsen M. M. , Di Padova F. E. , Boots A. M. , Gram H. , Joosten L. A. , van den Berg W. B. (2005) Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol. 167 141 - 149    DOI : 10.1016/S0002-9440(10)62961-6
Koenders M. I. , Kolls J. K. , Oppers-Walgreen B. , van den Bersselaar L. , Joosten L. A. , Schurr J. R. , Schwarzenberger P. , van den Berg W. B. , Lubberts E. (2005) Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52 3239 - 3247    DOI : 10.1002/art.21342
Genovese M. C. , Van den Bosch F. , Roberson S. A. , Bojin S. , Biagini I. M. , Ryan P. , Sloan-Lancaster J. (2010) LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum. 62 929 - 939    DOI : 10.1002/art.27334
Koenders M. I. , Marijnissen R. J. , Joosten L. A. , Abdollahi-Roodsaz S. , Di Padova F. E. , van de Loo F. A. , Dulos J. , van den Berg W. B. , Boots A. M. (2012) T cell lessons from the rheumatoid arthritis synovium SCID mouse model: CD3-rich synovium lacks response to CTLA-4Ig but is successfully treated by interleukin-17 neutralization. Arthritis Rheum. 64 1762 - 1770    DOI : 10.1002/art.34352
Zwerina K. , Koenders M. , Hueber A , Marijnissen R. J. , Baum W. , Heiland G. R. , Zaiss M. , McLnnes I. , Joosten L. , van den Berg W. , Zwerina J. , Schett G. (2012) Anti IL-17A therapy inhibits bone loss in TNF-alpha-mediated murine arthritis by modulation of the T-cell balance. Eur. J. Immunol. 42 413 - 423    DOI : 10.1002/eji.201141871
Chao C. C. , Chen S. J. , Adamopoulos I. E. , Davis N. , Hong K. , Vu A. , Kwan S , Fayadat-Dilman L. , Asio A. , Bowman E. P. (2011) Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis. Autoimmunity 44 243 - 252    DOI : 10.3109/08916934.2010.517815
Lubberts E. , van den Bersselaar L. , Oppers-Walgreen B. , Schwarzenberger P. , Coenen-de Roo C. J. , Kolls J. K. , Joosten L. A. , van den Berg W. B. (2003) IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance. J. Immunol. 170 2655 - 2662
Kikuta J. , Wada Y. , Kowada T. , Wang Z. , Sun-Wada G. H. , Nishiyama I. , Mizukami S. , Maiya N. , Yasuda H. , Kumanogoh A. , Kikuchi K. , Germain R. N. , Ishii M. (2013) Dynamic visualization of RANKL and Th17-mediated osteoclast function. J. Clin. Invest. 123 866 - 873
Bartold P. M. , Cantley M. D. , Haynes D. R. (2010) Mechanisms and control of pathologic bone loss in periodontitis. Periodontology2000 53 55 - 69    DOI : 10.1111/j.1600-0757.2010.00347.x
Oda T. , Yoshie H. , Yamazaki K. (2003) Porphyromonas gingivalis antigen preferentially stimulates T cells to express IL-17 but not receptor activator of NF-kappaB ligand in vitro. Oral Microbiol. Immunol. 18 30 - 36    DOI : 10.1034/j.1399-302X.2003.180105.x
Takahashi K. , Azuma T. , Motohira H. , Kinane D. F. , Kitetsu S. (2005) The potential role of interleukin-17 in the immunopathology of periodontal disease. J. Clin. Periodentol. 32 369 - 374    DOI : 10.1111/j.1600-051X.2005.00676.x
Vernal R. , Dutzan N. , Chaparro A. , Puente J. , Antonieta Valenzuela M. , Gamonal J. (2005) Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis. J. Clin. Periodontol. 32 383 - 389    DOI : 10.1111/j.1600-051X.2005.00684.x
Yu J. J. , Ruddy M. J. , Wong G. C. , Sfintescu C. , Baker P. J. , Smith J. B. , Evans R. T. , Gaffen S. L. (2007) An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood 109 3794 - 3802    DOI : 10.1182/blood-2005-09-010116
Schenkein H. A. , Koertge T. E. , Brooks C. N. , Sabatini R. , Purkall D. E. , Tew J. G. (2010) IL-17 in sera from patients with aggressive periodontitis. J. Dent. Res 89 943 - 947    DOI : 10.1177/0022034510369297
Duarte P. M. , da Rocha M. , Sampaio E. , Mestnik M. J. , Feres M. , Figueiredo L. C. , Bastos M. F. , Faveri M. (2010) Serum levels of cytokines in subjects with generalized chronic and aggressive periodontitis before and after non-surgical periodontal therapy: a pilot study. J. Periodontol. 81 1056 - 1063    DOI : 10.1902/jop.2010.090732
Adibrad M. , Deyhimi P. , Ganjalikhani Hakemi M. , Behfarnia P. , Shahabuei M. , Rafiee L. (2012) Signs of the presence of Th17 cells in chronic periodontal disease. J. Periodontal Res. 47 525 - 531    DOI : 10.1111/j.1600-0765.2011.01464.x