The balance between osteoblast-dependent bone formation and osteoclast-dependent bone resorption maintains bone homeostasis. In inflammatory conditions, this balance shifts toward bone resorption, causing osteolytic bone lesions observed in rheumatoid arthritis and periodontitis. A recently discovered family of cytokine IL-17 is widely reported to mediate diverse inflammatory processes. During the last decade, novel roles for IL-17 in skeletal homeostasis have been discovered indicating the potential importance of this cytokine in bone metabolism. This review will summarize and discuss the involvement of IL-17 during bone homeostasis in both physiologic and pathologic conditions. A better understanding of the role of IL-17 in skeletal systems warrants an advance in bone biology, as well as development of therapeutic strategies against bone-lytic diseases, such as rheumatoid arthritis and periodontitis. [BMB Reports 2013; 46(10): 479-483]
INTRODUCTION
IL-17 is a recently discovered family of cytokines composed of six members
(1)
. IL-17A was cloned in T cell hybridoma, as the first member of the new class of cytokine and generally entitled as IL-17
(2)
. Additional isoforms homologous to IL-17A designated as IL-17B, IL-17C, IL-17D, IL-17E, and IL-17F were discovered afterwards
(3)
. IL-17 is produced by a specialized subset of CD4+ T cells, called Th17 cells
(4)
. It is likely that the primary function of Th17 cells is to eliminate pathogens and IL-17 is a potent inducer of inflammation. The receptors for IL-17, IL-17R, constitute a distinct family of cytokine receptor
(3)
. In contrast to IL-17, IL17 receptor expression is ubiquitous, suggesting a possibility that IL-17 might affect the function of a wide variety of target cells. Until now, five members including IL-17RA, IL-17RB, IL-17RC, IL-17RD, and IL-17RE had been identified. IL-17RA is the founding member of this receptor family and binds to IL-17A
(5)
. The ligand-receptor specificity of IL-17-IL-17R interaction is yet to be fully unveiled. However, it has been demonstrated that IL-17RA and IL-17RC bind to IL-17A and IL-17F
(6
,
7)
.
IL-17 AND PRODUCTION OF INFLAMMATORY MEDIATORS
It has been shown that IL-17 can induce a wide variety of pro-inflammatory mediators in various types of cells involved in tissue damage, including macrophages. For example, IL-17 promoted the production of cytokines, such as IL-6, IL-1β, and TNF-α in mouse Kupffer cells
(8)
. IL-17 stimulated the production of IL-6 and TNF-α in human macrophages obtained from peripheral blood
(9)
. The increase of IL-6 following IL-17 treatment has also been reported in mouse microglia
(10)
. Similar induction of IL-6 was also reported in IL-17-stimulated human gingival fibroblasts
(11)
. Human peripheral blood mononuclear cell-derived macrophages responded to IL-17 to greatly enhance the production of IL-1β and TNF-α
(11
,
12)
. IL-17 is also known to trigger chemokine production. The most frequently reported chemokine instigated by IL-17 is IL-8, which was observed in human gingival fibroblasts
(11
,
13)
and human macrophages
(9)
. In mouse microglia, IL-17 also induced CXCL2 production
(10)
. In addition, IL-17 significantly elevated the expression of CCL2 in human macrophages
(14)
, CCL4 and CCL5 in mouse macrophages
(15)
, and CCL20 in human gingival fibroblasts
(16)
. IL-17 stimulated the production of prostaglandin E2 in MC3T3-E1 pre-osteoblasts
(17
,
18)
. Finally, IL-17 induced nitric oxide eneration in MC3T3-E1 cells
(19)
and in mouse astrocytes
(20)
.
IL-17 AND BONE METABOLISM
Bone homeostasis is intricately maintained by the coordination of bone formation by osteoblasts and bone resorption by osteoclasts. The role of IL-17 in the process of bone remodeling was first demonstrated in a study performed by Kotake
et al
. that showed IL-17, abundant in synovial fluids of rheumatoid arthritis patients, stimulated osteoclastogenesis in an osteo-blast-dependent manner
(21)
. Numerous following studies corroborated the pro-osteoclastogenic role of IL-17 both
in vitro
and
in vivo
. IL-17 stimulated bone resorption in combination with TNF-α in fetal mouse long bones
(22)
. However, whether IL-17 is directly working on osteoclast precursors or indirectly affecting osteoclast differentiation through stromal cells had not been clarified until Sato
et al
. revealed the role of Th17 cells on osteoclastogenesis
(23)
. In an effort to dissect the role of T cells in arthritic bone destruction, the authors discovered that IL-17 only stimulated the osteoclastogenesis in a co-culture of mouse osteoclasts and bone marrow macrophages (osteoclast precursors), while having no effect on the differentiation of a macrophage-only culture, suggesting that IL-17 induces the expression of RANKL (the osteoclast differentiation factor) in osteoclast-supporting cells, such as osteoblasts. Yet, the direct effect of IL-17 on osteoclast precursors is still controversial. IL-17 induced osteoclast differentiation from human monocytes in the absence of osteoblasts
(24)
. In contrast, Kitami
et al
. reported that IL-17 inhibited osteoclast differentiation from RAW264.7 cells
(25)
. Recently, it was reported that IL-17 inhibits osteoclastogenesis in mouse osteoblast-bone marrow cell co-culture by inducing the release of GM-CSF, an anti-osteoclastogenesis cytokine
(26)
. While the exact role of IL-17 in osteoclastogenesis still needs to be fully unveiled, it is likely that the effect of IL-17 on osteoclast differentiation is largely affected by multiple factors, such as the source of the osteoclast precursors, species, and culture conditions.
Little is known about the role of IL-17 in osteoblast differentiation and bone formation. Huang
et al
. published that IL-17 stimulated the formation of the colony-forming unit-fibroblast (CFU-f) from both human and mouse bone marrow stromal cells, suggesting that IL-17 is a growth factor for mesenchymal stem cells
(27)
. Indeed, the CFU-f formation induced by CD4+ T cells was significantly reduced after bone marrow transplant in IL-17RA-deficient recipient mice. In line with these observations, IL-17 enhanced the proliferation, as well as osteogenic differentiation of human mesenchymal stem cells
(28)
. The IL-17-induced mesenchymal stem cell proliferation was dependent upon the generation of reactive oxygen species (ROS) mediated by NADPH oxidase 1 downstream of TRAF6 and Act1. Then, ROS activated the MEK-ERK pathway to stimulate mesenchymal stem cell proliferation. Importantly, IL-17 induced the expression of M-CSF and RANKL, crucial cytokines required for osteoclast survival and differentiation, potentiating the role for IL-17 in bone remodeling. IL-17F also stimulated osteogenic differentiation of MC3T3-E1 mouse pre-osteoblast cells, as well as primary mouse mesenchymal stromal cells
(29)
. In mouse myoblast cell line C2C12, IL-17 promoted osteogenic differentiation, while suppressing myogenic differentiation
(30)
. Interestingly, IL-17 has been widely accepted to inhibit adipogenesis
(31)
, suggesting that IL-17 may steer mesenchymal stem cells into an osteogenic fate (
Fig. 1
).
The role of IL-17 in bone remodeling. IL-17, produced by Th17 cells, stimulate the production of MCSF and RANKL in osteoblasts and mesenchymal stem cells. These factors enhance the formation of bone-resorbing osteoclasts from monocyte/macrophage precursors. IL-17 not only accelerates the osteogenic differentiation of mesenchymal stem cells but also hampers adipogenic differentiation. Th17 cells are also RANKL-expressing T cells that support osteoclastogenesis.
IL-17 IN RHEUMATOID ARTHRITIS BONE DESTRUCTION
Since the first demonstration that IL-17 is crucially involved in bone resorption in rheumatoid arthritis patients
(21)
, scores of papers during the last decade confirmed the role of IL-17. The treatment of mice with anti-IL-17 antibody dramatically reduced not only the joint inflammation but also cartilage and bone destruction in a collagen-induced arthritis model
(32)
. The neutralization of endogenous IL-17 also significantly reduced bone erosion in a mouse methylated bovine serum albumin-induced experimental arthritis model by reducing the levels of RANKL, IL-1, and TNF-α
(33)
. By the same token, IL-17RA-deficient mice were clearly protected from cartilage destruction following arthritis induction by bacterial cell wall challenge
(34)
. These results strongly suggested that blocking the IL-17 signaling could be a strategy against rheumatoid arthritis. Indeed, Genovese
et al
. published that a humanized anti-IL-17 antibody successfully reduced the joint scores in a rheumatoid arthritis clinical study
(35)
. The usefulness of the anti-IL-17 therapy was further supported by recent studies that revealed the bone-protective effect of IL-17 blockade
(36
-
38)
. The aforementioned bone-destructive role of IL-17 is largely mediated by enhanced RANKL production by osteoblasts
(21)
, synovial cells
(33
,
39)
, and mesenchymal stem cells
(28)
. In addition, the IL-17-producing Th17 cells were proven to be the RANKL-expressing T cells
(23)
. In a recently published article, Kikuta
et al
. demonstrated that Th17 cells could activate mature osteoclasts into a bone-resorbing state
(40)
. Thus it is likely that Th17 cells in rheumatoid synovium, not only stimulate osteoclast differentiation by M-CSF and RANKL production in osteoclast-supporting cells via IL-17 secretion, but also directly activate osteoclast bone resorption via cell-cell contact as RANKL-producing T cells.
IL-17 IN PERIODONTITIS
Periodontitis is a panel of inflammatory diseases of the tissues surrounding teeth that leads to the destruction of alveolar bone. The bone loss associated with periodontitis is also mediated by osteoclasts
(41)
. In 2003, Oda
et al
. discovered that the surface antigens of
Porphyromonas gingivalis
, a gram-negative bacterium that causes periodontitis, significantly induced IL-17 expression in peripheral blood mononuclear cells
(42)
. Indeed, IL-17 mRNA was readily detected in tissue samples from periodontitis patients
(43)
. The increased amount of IL-17 protein was also detected in gingival crevicular fluid and cellular cultures of gingival tissues from periodontitis patients
(44)
. These early studies suggested that IL-17 might be also linked to periodontal diseases in a similar fashion observed in rheumatoid arthritis. However, Yu
et al
. reported that IL-17RAdeficient mice exhibited more severe alveolar bone loss upon challenge by
P. gingivalis
, suggesting a bone-protective role for IL-17 signaling
(45)
. The authors hypothesized that the IL-17 receptor-dependent signals are required for the neutrophil- mediated clearance of periodontal pathogens. Whether IL-17 stimulates bone destruction or protects bone in periodontitis is still an open question, although increasing evidence indicates that increased IL-17 expression in both chronic and aggressive periodontitis
(46
-
48)
.
CONCLUSION
A newly identified family of cytokine IL-17 accelerates bone metabolism by stimulating osteogenic differentiation of mesenchymal stem cells and osteoblasts and promoting pro-osteoclastogenic molecules on these cells. In conjunction with the widely accepted pro-inflammatory role, numerous reports indicate that IL-17 is involved in inflammatory bone diseases, such as rheumatoid arthritis. Indeed anti-IL-17 therapy produced promising results in clinical trials among the rheumatoid arthritis patients. Several recent reports discovered potential association between IL-17 and periodontitis, although it is controversial whether IL-17 is a bone-protective or bone-destroying cytokine in alveolar bone during periodontitis. A better understanding on the physiologic, as well as pathologic role, for IL-17 in bone metabolism will provide greater insight into the osteolytic process during periodontitis and ensure future development of therapies against this bone-destructive disease.
Acknowledgements
This research was supported by the Kyungpook National University research fund, 2012.
Moseley T. A.
,
Haudenschild D. R.
,
Rose L.
,
Reddi A. H.
(2003)
Interleukin-17 family and IL-17 receptors.
Cytokine Growth Factor Rev.
14
155 -
174
DOI : 10.1016/S1359-6101(03)00002-9
Rouvier E.
,
Luciani M. F.
,
Mattei M. G.
,
Denizot F.
,
Golstein P.
(1993)
CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene.
J. Immunol.
150
5445 -
5456
Witowski J.
,
Ksiazek K.
,
Jorres A.
(2004)
Interleukin-17: a mediator of inflammatory responses.
Cell Mol. Life Sci.
61
567 -
579
DOI : 10.1007/s00018-003-3228-z
Yao Z.
,
Fanslow W. C.
,
Seldin M. F.
,
Rousseau A. M.
,
Painter S. L.
,
Comeau M. R.
,
Cohen J. I.
,
Spriggs M.K.
(1995)
Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor.
Immunity
3
811 -
821
DOI : 10.1016/1074-7613(95)90070-5
Kuestner R. E.
,
Taft D. W.
,
Haran A.
,
Brandt C. S.
,
Brender T.
,
Lum K.
,
Harder B.
,
Okada S
,
Ostrander C.D.
,
Kreindler J. L.
,
Aujla S. J.
,
Reardon B.
,
Moore M.
,
Shea P.
,
Schreckhise R.
,
Bukowski T. R.
,
Presnell S.
,
Guerra-Lewis P.
,
Parrish-Novak J.
,
Ellsworth J. L.
,
Jaspers S.
,
Lewis K. E.
,
Appleby M.
,
Kolls J. K.
,
Rixon M.
,
West J. W.
,
Gao Z.
,
Levin S. D.
(2007)
Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F.
J. Immunol.
179
5462 -
5473
Toy D.
,
Kugler D.
,
Wolfson M.
,
Vanden Bos T.
,
Gurgel J.
,
Derry J.
,
Tocker J.
,
Peschon J.
(2006)
Cutting edge: interleukin 17 signals through a heteromeric receptor complex.
J. Immunol.
177
36 -
39
Meng F.
,
Wang K.
,
Aoyama T.
,
Grivennikov S. I.
,
Paik Y.
,
Scholten D.
,
Cong M.
,
Iwaisako K.
,
Liu X.
,
Zhang M.
,
Osterreicher C. H.
,
Stickel F.
,
Ley K.
,
Brenner D. A.
,
Kisseleva T.
(2012)
Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice.
Gastroenterology
143
765 -
776
DOI : 10.1053/j.gastro.2012.05.049
Gu Y.
,
Hu X.
,
Liu C.
,
Qv X.
,
Xu C.
(2008)
Interleukin (IL)-17 promotes macrophages to produce IL-8, IL-6 and tumour necrosis factor-alpha in aplastic anaemia.
Br. J. Haematol.
142
109 -
114
DOI : 10.1111/j.1365-2141.2008.07161.x
Kawanokuchi J.
,
Shimizu K.
,
Nitta A.
,
Yamada K.
,
Mizuno T.
,
Takeuchi H.
,
Suzumura A.
(2008)
Production and functions of IL-17 in microglia.
J. Neuroimmunol.
194
54 -
61
DOI : 10.1016/j.jneuroim.2007.11.006
Beklen A.
,
Ainola M.
,
Hukkanen M.
,
Gurgan C.
,
Sorsa T.
,
Konttinen Y. T.
(2007)
MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis.
J. Dent. Res.
86
347 -
351
DOI : 10.1177/154405910708600409
Jovanovic D. V.
,
Di Battista J. A.
,
Martel-Pelletier J.
,
Jolicoeur F. C.
,
He Y.
,
Zhang M.
,
Mineau F.
,
Pelletier J. P.
(1998)
IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages.
J. Immunol.
160
3513 -
3521
Mahanonda R.
,
Jitprasertwong P.
,
Sa-Ard-Iam N.
,
Rerkyen P.
,
Charatkulangkun O.
,
Jansisyanont P.
,
Nisapakultorn K.
,
Yongvanichit K.
,
Pichyangkul S.
(2008)
Effects of IL-17 on human gingival fibroblasts.
J. Dent. Res.
87
267 -
272
DOI : 10.1177/154405910808700314
Shahrara S.
,
Pickens S. R.
,
Mandelin A. M. 2nd
,
Karpus W. J.
,
Huang Q.
,
Kolls J. K.
,
Pope R. M.
(2010)
IL-17-mediated monocyte migration occurs partially through CC chemokine ligand 2/monocyte chemoattractant protein-1 induction.
J. Immunol.
184
4479 -
4487
DOI : 10.4049/jimmunol.0901942
Barin J. G.
,
Baldeviano G. C.
,
Talor M. V.
,
Wu L.
,
Ong S.
,
Quader F.
,
Chen P.
,
Zheng D.
,
Caturegli P.
,
Rose N. R.
,
Cihakova D.
(2012)
Macrophages participate in IL-17-mediated inflammation.
Eur. J. Immunol.
42
726 -
736
DOI : 10.1002/eji.201141737
Hosokawa Y.
,
Hosokawa I.
,
Ozaki K.
,
Nakanishi T.
,
Nakae H.
,
Matsuo T.
(2009)
Catechins inhibit CCL20 production in IL-17A-stimulated human gingival fibroblasts.
Cell. Physiol. Biochem.
24
391 -
396
DOI : 10.1159/000257431
Zhang F.
,
Tanaka H.
,
Kawato T.
,
Kitami S.
,
Nakai K.
,
Motohashi M.
,
Suzuki N.
,
Wang C. L.
,
Ochiai K.
,
Isokawa K.
,
Maeno M.
(2011)
Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts.
Biochimie
93
296 -
305
DOI : 10.1016/j.biochi.2010.10.001
Zhang F.
,
Koyama Y.
,
Sanuki R.
,
Mitsui N.
,
Suzuki N.
,
Kimura A.
,
Nakajima A.
,
Shimizu N.
,
Maeno M.
(2010)
IL-17A stimulates the expression of inflammatory cytokines via celecoxib-blocked prostaglandin in MC3T3-E1 cells.
Arch. Oral Biol.
55
679 -
688
DOI : 10.1016/j.archoralbio.2010.06.003
Van Bezooijen R. L.
,
Papapoulos S. E.
,
Lowik C. W.
(2001)
Effect of interleukin-17 on nitric oxide production and osteoclastic bone resorption: is there dependency on nuclear factor-kappaB and receptor activator of nuclear factor kappaB (RANK)/RANK ligand signaling?
Bone
28
378 -
386
DOI : 10.1016/S8756-3282(00)00457-9
Trajkovic V.
,
Stosic-Grujicic S.
,
Samardzic T.
,
Markovic M.
,
Miljkovic D.
,
Ramic Z.
,
Mostarica Stojkovic M.
(2001)
Interleukin-17 stimulates inducible nitric oxide synthase activation in rodent astrocytes.
J. Neuroimmunol.
119
183 -
191
DOI : 10.1016/S0165-5728(01)00391-5
Kotake S.
,
Udagawa N.
,
Takahashi N.
,
Matsuzaki K.
,
Itoh K.
,
Ishiyama S.
,
Saito S.
,
Inoue K.
,
Kamatani N.
,
Gillespie M. T.
,
Martin T. J.
,
Suda T.
(1999)
IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis.
J. Clin. Invest.
103
1345 -
1352
DOI : 10.1172/JCI5703
Van bezooijen R. L.
,
Farih-Sips H. C.
,
Papapoulos S. E.
,
Lowik C. W.
(1999)
Interleukin-17: A new bone acting cytokine in vitro.
J. Bone Miner. Res.
14
1513 -
1521
DOI : 10.1359/jbmr.1999.14.9.1513
Sato K.
,
Suematsu A.
,
Okamoto K.
,
Yamaguchi A.
,
Morishita Y.
,
Kadono Y.
,
Tanaka S.
,
Kodama T.
,
Akira S.
,
Iwakura Y.
,
Cua D. J.
,
Takayanagi H.
(2006)
Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction.
J. Exp. Med.
203
2673 -
2682
DOI : 10.1084/jem.20061775
Yago T.
,
Nanke Y.
,
Ichikawa N.
,
Kobashigawa T.
,
Mogi M.
,
Kamatani N.
,
Kotake S.
(2009)
IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17.
J. Cell Biochem.
108
947 -
955
DOI : 10.1002/jcb.22326
Kitami S.
,
Tanaka H.
,
Kawato T.
,
Tanabe N.
,
Katono-Tani T.
,
Zhang F.
,
Suzuki N.
,
Yonehara Y.
,
Maeno M.
(2010)
IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells.
Biochimie
92
398 -
404
DOI : 10.1016/j.biochi.2009.12.011
Balani D.
,
Aeberli D.
,
Hofstetter W.
,
Seitz M.
(2013)
Interleukin-17A stimulates granulocyte-macrophage colony-stimulating factor release by murine osteoblasts in the presence of 1,25-dihydroxyvitamin D(3) and inhibits murine osteoclast development in vitro.
Arthritis Rheum.
65
436 -
446
DOI : 10.1002/art.37762
Huang W.
,
La Russa V.
,
Alzoubi A.
,
Schwarzenberger P.
(2006)
Interleukin-17A: a T-cell-derived growth factor for murine and human mesenchymal stem cells.
Stem Cells (Dayton, Ohio)
24
1512 -
1518
DOI : 10.1634/stemcells.2005-0156
Huang H.
,
Kim H. J.
,
Chang E. J.
,
Lee Z. H.
,
Hwang S. J.
,
Kim H. M.
,
Lee Y.
,
Kim H. H.
(2009)
IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling.
Cell. Death. Differ.
16
1332 -
1343
DOI : 10.1038/cdd.2009.74
Nam D.
,
Mau E.
,
Wang Y.
,
Wrigh D.
,
Silkstone D.
,
Whetstone H.
,
Whyne C.
,
Alman B.
(2012)
T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair.
PloS One
7
e40044 -
DOI : 10.1371/journal.pone.0040044
Kocic J.
,
Santibanez J. F.
,
Krstic A.
,
Mojsilovic S.
,
Dordevic I. O.
,
Trivanovic D.
,
Ilic V.
,
Bugarski D.
(2012)
Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2.
Biochim. Biophys. Acta.
1823
838 -
849
DOI : 10.1016/j.bbamcr.2012.01.001
Lubberts E.
,
Koenders M. I.
,
Oppers-Walgreen B.
,
van den Bersselaar L.
,
Coenen-de Roo C. J.
,
Joosten L. A.
,
van den Berg W. B.
(2004)
Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion.
Arthritis Rheum.
50
650 -
659
DOI : 10.1002/art.20001
Koenders M. I.
,
Lubberts E.
,
Oppers-Walgreen B.
,
van den Bersselaar L.
,
Helsen M. M.
,
Di Padova F. E.
,
Boots A. M.
,
Gram H.
,
Joosten L. A.
,
van den Berg W. B.
(2005)
Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1.
Am. J. Pathol.
167
141 -
149
DOI : 10.1016/S0002-9440(10)62961-6
Koenders M. I.
,
Kolls J. K.
,
Oppers-Walgreen B.
,
van den Bersselaar L.
,
Joosten L. A.
,
Schurr J. R.
,
Schwarzenberger P.
,
van den Berg W. B.
,
Lubberts E.
(2005)
Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis.
Arthritis Rheum.
52
3239 -
3247
DOI : 10.1002/art.21342
Genovese M. C.
,
Van den Bosch F.
,
Roberson S. A.
,
Bojin S.
,
Biagini I. M.
,
Ryan P.
,
Sloan-Lancaster J.
(2010)
LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: A phase I randomized, double-blind, placebo-controlled, proof-of-concept study.
Arthritis Rheum.
62
929 -
939
DOI : 10.1002/art.27334
Koenders M. I.
,
Marijnissen R. J.
,
Joosten L. A.
,
Abdollahi-Roodsaz S.
,
Di Padova F. E.
,
van de Loo F. A.
,
Dulos J.
,
van den Berg W. B.
,
Boots A. M.
(2012)
T cell lessons from the rheumatoid arthritis synovium SCID mouse model: CD3-rich synovium lacks response to CTLA-4Ig but is successfully treated by interleukin-17 neutralization.
Arthritis Rheum.
64
1762 -
1770
DOI : 10.1002/art.34352
Zwerina K.
,
Koenders M.
,
Hueber A
,
Marijnissen R. J.
,
Baum W.
,
Heiland G. R.
,
Zaiss M.
,
McLnnes I.
,
Joosten L.
,
van den Berg W.
,
Zwerina J.
,
Schett G.
(2012)
Anti IL-17A therapy inhibits bone loss in TNF-alpha-mediated murine arthritis by modulation of the T-cell balance.
Eur. J. Immunol.
42
413 -
423
DOI : 10.1002/eji.201141871
Chao C. C.
,
Chen S. J.
,
Adamopoulos I. E.
,
Davis N.
,
Hong K.
,
Vu A.
,
Kwan S
,
Fayadat-Dilman L.
,
Asio A.
,
Bowman E. P.
(2011)
Anti-IL-17A therapy protects against bone erosion in experimental models of rheumatoid arthritis.
Autoimmunity
44
243 -
252
DOI : 10.3109/08916934.2010.517815
Lubberts E.
,
van den Bersselaar L.
,
Oppers-Walgreen B.
,
Schwarzenberger P.
,
Coenen-de Roo C. J.
,
Kolls J. K.
,
Joosten L. A.
,
van den Berg W. B.
(2003)
IL-17 promotes bone erosion in murine collagen-induced arthritis through loss of the receptor activator of NF-kappa B ligand/osteoprotegerin balance.
J. Immunol.
170
2655 -
2662
Kikuta J.
,
Wada Y.
,
Kowada T.
,
Wang Z.
,
Sun-Wada G. H.
,
Nishiyama I.
,
Mizukami S.
,
Maiya N.
,
Yasuda H.
,
Kumanogoh A.
,
Kikuchi K.
,
Germain R. N.
,
Ishii M.
(2013)
Dynamic visualization of RANKL and Th17-mediated osteoclast function.
J. Clin. Invest.
123
866 -
873
Oda T.
,
Yoshie H.
,
Yamazaki K.
(2003)
Porphyromonas gingivalis antigen preferentially stimulates T cells to express IL-17 but not receptor activator of NF-kappaB ligand in vitro.
Oral Microbiol. Immunol.
18
30 -
36
DOI : 10.1034/j.1399-302X.2003.180105.x
Takahashi K.
,
Azuma T.
,
Motohira H.
,
Kinane D. F.
,
Kitetsu S.
(2005)
The potential role of interleukin-17 in the immunopathology of periodontal disease.
J. Clin. Periodentol.
32
369 -
374
DOI : 10.1111/j.1600-051X.2005.00676.x
Vernal R.
,
Dutzan N.
,
Chaparro A.
,
Puente J.
,
Antonieta Valenzuela M.
,
Gamonal J.
(2005)
Levels of interleukin-17 in gingival crevicular fluid and in supernatants of cellular cultures of gingival tissue from patients with chronic periodontitis.
J. Clin. Periodontol.
32
383 -
389
DOI : 10.1111/j.1600-051X.2005.00684.x
Yu J. J.
,
Ruddy M. J.
,
Wong G. C.
,
Sfintescu C.
,
Baker P. J.
,
Smith J. B.
,
Evans R. T.
,
Gaffen S. L.
(2007)
An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals.
Blood
109
3794 -
3802
DOI : 10.1182/blood-2005-09-010116
Schenkein H. A.
,
Koertge T. E.
,
Brooks C. N.
,
Sabatini R.
,
Purkall D. E.
,
Tew J. G.
(2010)
IL-17 in sera from patients with aggressive periodontitis.
J. Dent. Res
89
943 -
947
DOI : 10.1177/0022034510369297
Duarte P. M.
,
da Rocha M.
,
Sampaio E.
,
Mestnik M. J.
,
Feres M.
,
Figueiredo L. C.
,
Bastos M. F.
,
Faveri M.
(2010)
Serum levels of cytokines in subjects with generalized chronic and aggressive periodontitis before and after non-surgical periodontal therapy: a pilot study.
J. Periodontol.
81
1056 -
1063
DOI : 10.1902/jop.2010.090732
Adibrad M.
,
Deyhimi P.
,
Ganjalikhani Hakemi M.
,
Behfarnia P.
,
Shahabuei M.
,
Rafiee L.
(2012)
Signs of the presence of Th17 cells in chronic periodontal disease.
J. Periodontal Res.
47
525 -
531
DOI : 10.1111/j.1600-0765.2011.01464.x