Advanced
Isolation of the Inositol Phosphoceramide Synthase Gene (AUR1) from Stress-Tolerant Yeast Pichia kudriavzevii
Isolation of the Inositol Phosphoceramide Synthase Gene (AUR1) from Stress-Tolerant Yeast Pichia kudriavzevii
Journal of Microbiology and Biotechnology. 2015. Nov, 25(11): 1902-1907
Copyright © 2015, The Korean Society For Microbiology And Biotechnology
  • Received : August 06, 2015
  • Accepted : August 24, 2015
  • Published : November 28, 2015
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Boung-Hyuk Yoo
Myoung-Dong Kim
mdkim@kangwon.ac.kr

Abstract
This study is the first report of the entire nucleotide sequence of an inositol phosphoceramide synthase gene from the stress-tolerant yeast Pichia kudriavzevii ( PkAUR1 ). Sequence analysis revealed an open reading frame that spans 1,443 bp and encodes a 480-amino-acid-residue protein with the highest sequence similarity (41.7%) to Aur1 from Spathaspora passalidarum . A phenotypic assay with transformed S. cerevisiae and P. kudriavzevii indicated that two amino acid residues, Phe166 and Gly249, play crucial roles in the resistance to aureobasidin A, which is consistent with previous reports for other fungal Aur1s. The GenBank Accession No. for PkAUR1 is KP729614.
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
Fully conserved residues are marked in black. The conserved regions on which degenerate primers were designed are marked with asterisks. Conserved active sites are marked with filled circles and mutation points are marked with open circle, respectively. The numbers on the left and right indicate the positions of the amino acids. Pichia kudriavzevii (GenBank Accession No. KP729614); Aspergillus niger (XP_001397677); Candida maltosa (EMG46393); Candida tropicalis (EER30924); Komagataella pastoris (CCA38044); Saccharomyces cerevisiae (CCA81836); Schizosaccharomyces pombe (CAA93163), and Spathaspora passalidarum (XP007375317).
PPT Slide
Lager Image
S. cerevisiae cells were grown in SC Leu ( A ) and SC Leu supplemented with AbA ( B ). P. kudriavzevii cells were grown in YEPD plate containing AbA ( C ).
Acknowledgements
This work was supported by the Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea (NRF-2014H1C1A1073145).
References
Casey GP , Xiao W , Rank GH 1988 A convenient dominant selection marker for gene transfer in industrial strains ofSaccharomycesyeast:SMR1encoded resistance to the herbicide sulfometuron methyl. J. Inst. Brew. 94 93 - 97    DOI : 10.1002/j.2050-0416.1988.tb04564.x
Endo M , Takesako K , Kato I , Yamaguchi H 1997 Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, againstSaccharomyces cerevisiae. Antimicrob. Agents Chemother. 41 672 - 676
Gallardo JC , Souza CS , Cicarelli RM , Oliveira KF , Morais MR , Laluce C 2011 Enrichment of a continuous culture ofSaccharomyces cerevisiaewith the yeastIssatchenkia orientalisin the production of ethanol at increasing temperatures. J. Ind. Microbiol. Biotechnol. 38 405 - 414    DOI : 10.1007/s10295-010-0783-9
Gietz RD , Woods RA 2002 Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethyleneglycol method. Methods Enzymol. 350 87 - 96
Hashida-Okado T , Ogawa A , Kato I , Takesako K 1998 Transformation system for prototrophic industirial yeasts using theAUR1gene as a dominant selection marker. FEBS Lett. 425 117 - 122    DOI : 10.1016/S0014-5793(98)00211-7
Hashida-Okado T , Yasumoto R , Endo M , Takesako K , Kato I 1998 Isolation and characterization of the aureobasidin Aresistant gene,aur1R, onSchizosaccharomyces pombe: roles ofAur1p+in cell morphogenesis. Curr. Genet. 33 38 - 45    DOI : 10.1007/s002940050306
Heidler SA , Radding JA 2000 Inositol phosphoryl transferases from human pathogenic fungi. Biochim. Biophys. Acta 1500 147 - 152    DOI : 10.1016/S0925-4439(99)00097-6
Heidmann S , Schindewolf C , Stumpf G , Domdey H 1994 Flexibility and interchangeability of polyadenylation signals inSaccharomyces cerevisiae. Mol. Cell. Biol. 14 4633 - 4342    DOI : 10.1128/MCB.14.7.4633
Hentges P , Van Driessche B , Tafforeau L , Vandenhaute J , Carr AM 2005 Three novel antibiotic marker cassettes for gene disruption and marker switching inSchizosaccharomyces pombe. Yeast 13 1013 - 1019    DOI : 10.1002/yea.1291
Hope IA , Struhl K 1986 Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46 885 - 894    DOI : 10.1016/0092-8674(86)90070-X
Ikai K , Takesako K , Shiomi K , Moriguchi M , Umeda Y , Yamamoto J 1991 Structure of aureobasidin A. J. Antibiot. 44 925 - 933    DOI : 10.7164/antibiotics.44.925
Isono N , Hayakawa H , Usami A , Mishima T , Hisamatsu M 2012 A comparative study of ethanol production byIssatchenkia orientalisstrains under stress conditions. Appl. Microbiol. Biotechnol. 113 76 - 78
Kanda K , Ishida T , Hirota R , Ono S , Motomura K , Ikeda T 2014 Application of a phosphite dehydrogenase gene as a novel dominant selection marker for yeasts. J. Biotechnol. 182-183 68 - 73    DOI : 10.1016/j.jbiotec.2014.04.012
Kitagawa T , Tokuhiro K , Sugiyama H , Kohda K , Isono N , Hisamatsu M 2010 Construction of a β-glucosidase expression system using the multistress-tolerant yeastIssatchenkia orientalis. Appl. Microbiol. Biotechnol. 87 1841 - 1853    DOI : 10.1007/s00253-010-2629-9
Kurtzman CP , Smiley MJ , Johnson CJ 1980 Emendation of the genusIssatchenkia kudriavzevand comparison of species by deoxyribonucleic acid reassociation, mating reaction, and ascospore ultrastructure. Int. J. Syst. Bacteriol. 30 503 - 513    DOI : 10.1099/00207713-30-2-503
Kwon YJ , Ma AZ , Li Q , Wang F , Zhuang GQ , Liu CZ 2011 Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerantIssatchenkia orientalis. Bioresour. Technol. 102 8099 - 8104    DOI : 10.1016/j.biortech.2011.06.035
Meroth CB , Hammes WP , Hertel C 2003 Identification and population dynamics of yeasts in soudrough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 69 7453 - 7461    DOI : 10.1128/AEM.69.12.7453-7461.2003
Ogawa-Mitsuhashi K , Sagane K , Kuromitsu J , Takagi H , Tsukahara K 2009 MPR1as a novel selection marker inSaccharomyces cerevisiae. Yeast 11 587 - 593    DOI : 10.1002/yea.1708
Ongol MP , Asano K 2009 Main microorganisms involved in the fermentation of Ugandan ghee. Int. J. Food Microbiol. 133 286 - 291    DOI : 10.1016/j.ijfoodmicro.2009.06.003
Park EH , Lee DH , Seo JH , Kim MD 2011 Cloning and characterization of a glyoxalase I gene from the osmotolerant yeastCandida magnoliae. J. Microbiol. Biotechnol. 21 277 - 283
Sakai K , Yamamoto M 1986 Transformation of yeast,Saccharomyces carlsbergensis, using an antibiotic resistance marker. Agric. Biol. Chem. 50 1177 - 1182    DOI : 10.1271/bbb1961.50.1177
Sambrook J , Russell DW 2011 Molecular Cloning. Cold Spring Harbor Laboratory Press Cold Spring Harbor, New York
Takesako K , Kuroda H , Inoue T , Haruna F , Yoshikawa Y , Kato I 1993 Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. 46 1414 - 1420    DOI : 10.7164/antibiotics.46.1414
Toivary M , Vehkomäki ML , Nygård Y , Penttilä M , Ruohonen L , Wiebe MG 2013 Low pH D-xylonate production withPichia kudriavzevii. Bioresour. Technol. 133 555 - 562    DOI : 10.1016/j.biortech.2013.01.157
Van Den Berg MA , Steensma HY 1997 Expression cassettes for formaldehyde and fluoroacetate resistance, two dominant markers inSaccharomyces cerevisiae. Yeast 13 551 - 559    DOI : 10.1002/(SICI)1097-0061(199705)13:6<551::AID-YEA113>3.0.CO;2-0