Advanced
Kinetic Characterization and Molecular Modeling of <TEX>$NAD(P)^+$</TEX>-Dependent Succinic Semialdehyde Dehydrogenase from Bacillus subtilis as an Ortholog YneI
Kinetic Characterization and Molecular Modeling of $NAD(P)^+$-Dependent Succinic Semialdehyde Dehydrogenase from Bacillus subtilis as an Ortholog YneI
Journal of Microbiology and Biotechnology. 2014. Jul, 24(7): 954-958
Copyright © 2014, The Korean Society For Microbiology And Biotechnology
  • Received : February 25, 2014
  • Accepted : May 06, 2014
  • Published : July 28, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Seong Ah Park
Ye Song Park
Ki Seog Lee
kslee@cup.ac.kr

Abstract
Succinic semialdehyde dehydrogenase (SSADH) catalyzes the oxidation of succinic semialdehyde (SSA) into succinic acid in the final step of γ-aminobutyric acid degradation. Here, we characterized Bacillus subtilis SSADH ( Bs SSADH) regarding its cofactor discrimination and substrate inhibition. Bs SSADH showed similar values of the catalytic efficiency (k ca t/K m ) in both NAD + and NADP + as cofactors, and exhibited complete uncompetitive substrate inhibition at higher SSA concentrations. Further analyses of the sequence alignment and homology modeling indicated that the residues of catalytic and cofactor-binding sites in other SSADHs were highly conserved in Bs SSADH.
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Acknowledgements
This study was supported by Research Fund (2011) offered from the Catholic University of Pusan, and was also based on the Master degree thesis of Seong Ah Park.
References
Ahn JW , Kim YG , Kim KJ 2010 Crystal structure of non-redox regulated SSADH from Escherichia coli. Biochem. Biophys. Res. Commun. 392 106 - 111    DOI : 10.1016/j.bbrc.2010.01.014
Arnold K , Bordoli L , Kopp J , Schwede T 2006 The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22 195 - 201    DOI : 10.1093/bioinformatics/bti770
Aronson JN , Borris DP , Doerner JF , Akers E 1975 Gammaaminobutyric acid pathway and modified tricarboxylic acid cycle activity during growth and sporulation of Bacillus thuringiensis. Appl. Microbiol. 30 489 - 492
Benkert P , Biasini M , Schwede T 2011 Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27 343 - 350    DOI : 10.1093/bioinformatics/btq662
Bown AW , Shelp BJ 1997 The metabolism and functions of γ-aminobutyric acid. Plant Physiol. 115 1 - 5
Burton RL , Chen S , Xu XL , Grant GA 2007 A novel mechanism for substrate inhibition in Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase. J. Biol. Chem. 282 31517 - 31524    DOI : 10.1074/jbc.M704032200
Chambliss KL , Caudle DL , Hinson DD , Moomaw CR , Slaughter CA , Jakobs C , Gibson KM 1995 Molecular cloning of the mature NAD(+)-dependent succinic semialdehyde dehydrogenase from rat and human. cDNA isolation, evolutionary homology, and tissue expression. J. Biol. Chem. 270 461 - 467    DOI : 10.1074/jbc.270.1.461
Cleland WW 1963 Computer programmes for processing enzyme kinetic data. Nature 198 463 - 465    DOI : 10.1038/198463a0
Fait A , Fromm H , Walter D , Galili G , Fernie AR 2008 Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci. 13 14 - 19    DOI : 10.1016/j.tplants.2007.10.005
Fuhrer T , Chen L , Sauer U , Vitkup D 2007 Computational prediction and experimental verification of the gene encoding the NAD+/NADP+-dependent succinate semialdehyde dehydrogenase in Escherichia coli. J. Bacteriol. 189 8073 - 8078    DOI : 10.1128/JB.01027-07
Gouet P , Robert X , Courcelle E 2003 ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31 3320 - 3323    DOI : 10.1093/nar/gkg556
Jakoby WB , Scott EM 1959 Aldehyde oxidation. III. Succinic semialdehyde dehydrogenase. J. Biol. Chem. 234 937 - 940
Kriegstein AR 2005 GABA puts the brake on stem cells. Nat. Neurosci. 8 1132 - 1133    DOI : 10.1038/nn0905-1132
Langendorf CG , Key TL , Fenalti G , Kan WT , Buckle AM , Caradoc-Davies T 2010 The X-ray crystal structure of Escherichia coli succinic semialdehyde dehydrogenase; structural insights into NADP+/enzyme interactions. PLoS One 5 e9280 -    DOI : 10.1371/journal.pone.0009280
Lineweaver H , Burk D 1934 The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56 658 - 666    DOI : 10.1021/ja01318a036
Skinner MA , Cooper RA 1982 An Escherichia coli mutant defective in the NAD-dependent succinate semialdehyde dehydrogenase. Arch. Microbiol. 132 270 - 275    DOI : 10.1007/BF00407964
Tenover FC 2006 Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119 S3 - S10    DOI : 10.1016/j.amjmed.2006.03.011
Wang J , Araki T , Ogawa T , Matsuoka M , Fukuda H 1999 A method of graphically analyzing substrate-inhibition kinetics. Biotechnol. Bioeng. 62 402 - 411    DOI : 10.1002/(SICI)1097-0290(19990220)62:4<402::AID-BIT3>3.0.CO;2-V
Wright SK , Viola RE 1998 Evaluation of methods for the quantitation of cysteines in proteins. Anal. Biochem. 265 8 - 14    DOI : 10.1006/abio.1998.2858
Yuan Z , Yin B , Wei D , Yuan YR 2013 Structural basis for cofactor and substrate selection by cyanobacterium succinic semialdehyde dehydrogenase. J. Struct. Biol. 182 125 - 135    DOI : 10.1016/j.jsb.2013.03.001
Zheng H , Beliavsky A , Tchigvintsev A , Brunzelle JS , Brown G , Flick R 2013 Structure and activity of the NAD(P)+- dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Proteins 81 1031 - 1041    DOI : 10.1002/prot.24227