Advanced
Genome Sequence and Comparative Genome Analysis of Pseudomonas syringae pv. syringae Type Strain ATCC 19310
Genome Sequence and Comparative Genome Analysis of Pseudomonas syringae pv. syringae Type Strain ATCC 19310
Journal of Microbiology and Biotechnology. 2014. Apr, 24(4): 563-567
Copyright © 2014, The Korean Society For Microbiology And Biotechnology
  • Received : January 02, 2014
  • Accepted : January 15, 2014
  • Published : April 28, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Yong-Soon Park
Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 305-806, Republic of Korea
Haeyoung Jeong
Korean Bioinformation Center (KOBIC), KRIBB, Daejeon 305-806, Republic of Korea
Young Mi Sim
Korean Bioinformation Center (KOBIC), KRIBB, Daejeon 305-806, Republic of Korea
Hwe-Su Yi
Molecular Phytobacteriology Laboratory, Superbacteria Research Center, KRIBB, Daejeon 305-806, Republic of Korea
Choong-Min Ryu
Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-333, Republic of Korea
cmryu@kribb.re.kr

Abstract
Pseudomonas syringae pv. syringae ( Psy ) is a major bacterial pathogen of many economically important plant species. Despite the severity of its impact, the genome sequence of the type strain has not been reported. Here, we present the draft genome sequence of Psy ATCC 19310. Comparative genomic analysis revealed that Psy ATCC 19310 is closely related to Psy B728a. However, only a few type III effectors, which are key virulence factors, are shared by the two strains, indicating the possibility of host-pathogen specificity and genome dynamics, even under the pathovar level.
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Acknowledgements
This research was supported by grants from the Next-Generation BioGreen 21 program (SSAC grant # PJ009524) of the Rural Development Administration, BioNano Health-Guard Research Center funded by the Ministry of Science, ICT & Future Planning (MSIP) as Global Frontier Project (Grant No. H-GUARD_2013M3A6B2078952), and the KRIBB Initiative Program, Republic of Korea.
References
Agrios GN 2005 Plant Pathology 5th Ed. Academic Press 952 -
Alikhan NF , Petty NK , Ben Zakour NL , Beatson SA 2011 BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12 402 -    DOI : 10.1186/1471-2164-12-402
Almeida NF , Yan S , Lindeberg M , Studholme DJ , Schneider DJ , Condon B 2009 A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Mol. Plant Microb. Interact. 22 52 - 62    DOI : 10.1094/MPMI-22-1-0052
Aziz RK , Bartels D , Best AA , DeJongh M , Disz T , Edwards RA 2008 The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9 75 -    DOI : 10.1186/1471-2164-9-75
Buell CR , Joardar V , Lindeberg M , Selengut J , Paulsen IT , Gwinn ML 2003 The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 100 10181 - 10186    DOI : 10.1073/pnas.1731982100
Bull CT , De Boer SH , Denny TP , Firrao G , Fischer-Le Saux M , Saddler GS 2010 Comprehensive list of names of plant pathogenic bacteria, 1980-2007. J. Plant Pathol. 92 551 - 592
Cornelis GR , Van Gijsegem F 2000 Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54 735 - 774    DOI : 10.1146/annurev.micro.54.1.735
Gardan L , Shafik H , Belouin S , Broch R , Grimont F , Grimont PA 1999 DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. Syst. Bacteriol. 49 469 - 478    DOI : 10.1099/00207713-49-2-469
Gross H , Loper JE 2009 Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26 1408 - 1446    DOI : 10.1039/b817075b
Joardar V , Lindeberg M , Jackson RW , Selengut J , Dodson R , Brinkac LM 2005 Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J. Bacteriol. 187 6488 - 6498    DOI : 10.1128/JB.187.18.6488-6498.2005
Kennelly MM , Cazorla FM , de Vicente A , Ramos C , Sundin GM 2007 Pseudomonas syringae diseases of fruit trees. Progress toward understanding and control. Plant Dis. 91 4 - 17    DOI : 10.1094/PD-91-0004
Lessie TG , Phibbs PV 1984 Alternative pathways of carbohydrate utilization in pseudomonads. Annu. Rev. Microbiol. 38 359 - 388    DOI : 10.1146/annurev.mi.38.100184.002043
Lewis JD , Guttman DS , Desveaux D 2009 The targeting of plant cellular systems by injected type III effector proteins. Semin. Cell Dev. Biol. 20 1055 - 1063    DOI : 10.1016/j.semcdb.2009.06.003
Lindgren PB , Peet RC , Panopoulos NJ 1986 Gene cluster of Pseudomonas syringae pv. “phaseolicola” controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 168 512 - 522
Monier JM , Lindow SE 2005 Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb. Ecol. 49 343 - 352    DOI : 10.1007/s00248-004-0007-9
Richter M , Rossello-Mora R 2009 Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106 19126 - 19131    DOI : 10.1073/pnas.0906412106
Wu X , Monchy S , Taghavi S , Zhu W , Ramos J , van der Lelie D 2011 Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol. Rev. 35 299 - 323    DOI : 10.1111/j.1574-6976.2010.00249.x