Advanced
Enhanced Production of <TEX>${\varepsilon}$</TEX>-Caprolactone by Coexpression of Bacterial Hemoglobin Gene in Recombinant Escherichia coli Expressing Cyclohexanone Monooxygenase Gene
Enhanced Production of ${\varepsilon}$-Caprolactone by Coexpression of Bacterial Hemoglobin Gene in Recombinant Escherichia coli Expressing Cyclohexanone Monooxygenase Gene
Journal of Microbiology and Biotechnology. 2014. Dec, 24(12): 1685-1689
Copyright © 2014, The Korean Society For Microbiology And Biotechnology
  • Received : September 18, 2014
  • Accepted : September 29, 2014
  • Published : December 28, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Won-Heong Lee
Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
Eun-Hee Park
Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
Myoung-Dong Kim
Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
mdkim@kangwon.ac.kr

Abstract
Baeyer-Villiger (BV) oxidation of cyclohexanone to ε-caprolactone in a microbial system expressing cyclohexanone monooxygenase (CHMO) can be influenced by not only the efficient regeneration of NADPH but also a sufficient supply of oxygen. In this study, the bacterial hemoglobin gene from Vitreoscilla stercoraria ( vhb ) was introduced into the recombinant Escherichia coli expressing CHMO to investigate the effects of an oxygen-carrying protein on microbial BV oxidation of cyclohexanone. Coexpression of Vhb allowed the recombinant E. coli strain to produce a maximum ε-caprolactone concentration of 15.7 g/l in a fed-batch BV oxidation of cyclohexanone, which corresponded to a 43% improvement compared with the control strain expressing CHMO only under the same conditions.
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Acknowledgements
This work was supported by “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ009993)”, Rural Development Administration, Republic of Korea.
View Fulltext  
Chien LJ , Lee CK 2007 Enhanced hyaluronic acid production inBacillus subtilisby coexpressing bacterial hemoglobin. Biotechnol. Prog. 23 1017 - 1022
De Mey M , De Maeseneire S , Soetaert W , Vandamme E 2007 Minimizing acetate formation inE. colifermentations. J. Ind. Microbiol. Biotechnol. 34 689 - 700    DOI : 10.1007/s10295-007-0244-2
Doo EH , Lee WH , Seo HS , Seo JH , Park JB 2009 Productivity of cyclohexanone oxidation of the recombinantCorynebacterium glutamicumexpressingchnBofAcinetobacter calcoaceticus. J. Biotechnol. 142 164 - 169    DOI : 10.1016/j.jbiotec.2009.04.008
Drepper T , Eggert T , Hummel W , Leggewie C , Pohl M , Rosenau F 2006 Novel biocatalysts for white biotechnology. Biotechnol. J. 1 777 - 786    DOI : 10.1002/biot.200600059
Duetz WA , van Beilen JB , Witholt B 2001 Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12 419 - 425    DOI : 10.1016/S0958-1669(00)00237-8
Fery AD , Kallio PT 2003 Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol. Rev. 27 525 - 545    DOI : 10.1016/S0168-6445(03)00056-1
Gardner AM , Gardner PR 2002 Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic,Escherichia coli. Evidence for a novel inducible anaerobic nitric oxidescavenging activity. J. Biol. Chem. 277 8166 - 8171    DOI : 10.1074/jbc.M110470200
Gardner PR , Gardner AM , Martin LA , Salzman AL 1998 Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95 10378 - 10383    DOI : 10.1073/pnas.95.18.10378
Hausladen A , Gow AJ , Stamler JS 1998 Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 95 14100 - 14105    DOI : 10.1073/pnas.95.24.14100
Hilker I , Baldwin C , Alphand V , Furstoss R , Woodley J , Wohlgemuth R 2006 On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic BaeyerVilliger oxidation process. Biotechnol. Bioeng. 93 1138 - 1144    DOI : 10.1002/bit.20829
Isken S , de Bont JA 1998 Bacteria tolerant to organic solvents. Extremophiles 2 229 - 238    DOI : 10.1007/s007920050065
Jon DS 1998 Cyclohexanone monopoxygenase: a useful reagent asymmetric Baeyer-Villiger reactions. Curr. Opin. Biotechnol. 2 195 - 216
Joshi M , Dikshit KL 1994 Oxygen dependent regulation ofVitreoscillaglobin gene: evidence for positive regulation by FNR. Biochem. Biophys. Res. Commun. 202 535 - 542    DOI : 10.1006/bbrc.1994.1961
Kallio PT , Kim DJ , Tsai PS , Bailey JE 1994 Intracellular expression ofVitreoscillahemoglobin altersEscherichia colienergy metabolism under oxygen-limited conditions. Eur. J. Biochem. 219 201 - 208    DOI : 10.1111/j.1432-1033.1994.tb19931.x
Khosla C , Bailey JE 1988 Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinantEscherichia coli. Nature 331 633 - 635    DOI : 10.1038/331633a0
Khosla C , Bailey JE 1989 Characterization of the oxygendependent promoter of theVitreoscillahemoglobin gene inEscherichia coli. J. Bacteriol. 171 5995 - 6004
Khosla C , Bailey JE 1989 Evidence for partial export ofVitreoscillahemoglobin into the periplasmic space inEscherichia coli. Implications for protein function. J. Mol. Biol. 210 79 - 89    DOI : 10.1016/0022-2836(89)90292-1
Khosla C , Curtis JE , DeModena J , Rinas U , Bailey JE 1990 Expression of intracellular hemoglobin improves protein synthesis in oxygen-limitedEscherichia coli. Biotechnology (NY) 8 849 - 853    DOI : 10.1038/nbt0990-849
Lee WH , Kim JW , Park EH , Han NS , Kim MD , Seo JH 2013 Effects of NADH kinase on NADPH-dependent biotransformation processes inEscherichia coli. Appl. Microbiol. Biotechnol. 97 1561 - 1569    DOI : 10.1007/s00253-012-4431-3
Lee WH , Park JB , Park K , Kim MD , Seo JH 2007 Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinantEscherichia coliharboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. 76 329 - 338    DOI : 10.1007/s00253-007-1016-7
Leisch H , Mortey K , Lau PC 2011 Baeyer-Villiger monooxygenases: more than just green chemistry. Chem. Rev. 111 4165 - 4222    DOI : 10.1021/cr1003437
Park JB 2007 Oxygenase-based whole-cell biocatalysis in organic synthesis. J. Microbiol. Biotechnol. 17 379 - 392
Ramandeep , Hwang KW , Raje M , Kim KJ , Stark BC , Dikshit KL , Webster DA 2001 Vitreoscillahemoglobin. Intracellular localization and binding to membranes. J. Biol. Chem. 276 24781 - 24789    DOI : 10.1074/jbc.M009808200
Sanny T , Arnaldos M , Kunkel SA , Pagilla KR , Stark BC 2010 Engineering of ethanolicE. coliwith theVitreoscillahemoglobin gene enhances ethanol production from both glucose and xylose. Appl. Microbiol. Biotechnol. 88 1103 - 1112    DOI : 10.1007/s00253-010-2817-7
Walton AZ , Stewart JD 2002 An efficient enzymatic Baeyer-Villiger oxidation by engineeredEscherichia colicells under non-growing conditions. Biotechnol. Prog. 18 262 - 268    DOI : 10.1021/bp010177c
Walton AZ , Stewart JD 2004 Understanding and improving NADPH-dependent reactions by nongrowingEscherichia colicells. Biotechnol. Prog. 20 403 - 411    DOI : 10.1021/bp030044m
Zhang L , Li Y , Wang Z , Xia Y , Chen W , Tang K 2007 Recent developments and future prospects ofVitreoscillahemoglobin application in metabolic engineering. Biotechnol. Adv. 25 123 - 136    DOI : 10.1016/j.biotechadv.2006.11.001
Zhao H , van der Donk WA 2003 Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 14 583 - 589    DOI : 10.1016/j.copbio.2003.09.007