Advanced
Biosynthesis of Pinocembrin from Glucose Using Engineered Escherichia coli
Biosynthesis of Pinocembrin from Glucose Using Engineered Escherichia coli
Journal of Microbiology and Biotechnology. 2014. Nov, 24(11): 1536-1541
Copyright © 2014, The Korean Society For Microbiology And Biotechnology
  • Received : June 05, 2014
  • Accepted : July 28, 2014
  • Published : November 28, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
Bong Gyu Kim
Department of Forest Resources, Gyeongnam National University of Science and Technology, Jinju-si 660-758, Republic of Korea
Hyejin Lee
Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
Joong-Hoon Ahn
Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
jhahn@konkuk.ac.kr

Abstract
Pinocembrin is a flavonoid that exhibits diverse biological properties. Although the major source of pinocembrin is propolis, it can be synthesized biologically using microorganisms such as Escherichia coli , which has been used to synthesize diverse natural compounds. Pinocembrin is synthesized from phenylalanine by the action of three enzymes; phenylalanine ammonia lyase (PAL), 4-coumarate:CoA ligase (4CL), and chalcone synthase (CHS). In order to synthesize pinocembrin from glucose in Escherichia coli , the PAL, 4CL , and CHS genes from three different plants were introduced into an E. coli strain. Next, we tested the different constructs containing 4CL and CHS. In addition, the malonyl-CoA level was increased by overexpressing acetyl-CoA carboxylase. Through these strategies, a high production yield (97 mg/l) of pinocembrin was achieved.
Keywords
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
PPT Slide
Lager Image
Acknowledgements
This work was supported by a grant from the NextGeneration BioGreen 21 Program (PJ00948301), Rural Development Administration, Republic of Korea, and by the Priority Research Centers Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2009-0093824).
References
Aboushoer MI , Fathy HM , Abdel-Kader MS , Goetz G , Omara AA 2010 Terpenes and flavonoids from an Egyptian collection ofCleome droserifolia. Nat. Prod. Res. 24 687 - 696    DOI : 10.1080/14786410903292433
Austin MB , Noel JP 2003 The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 20 79 - 110    DOI : 10.1039/b100917f
Cochrane FC , Davin LB , Lewis NG 2004 TheArabidopsisphenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoform. Phytochemistry 65 1557 - 1564    DOI : 10.1016/j.phytochem.2004.05.006
Dixon RA , Paiva NL 1995 Stress-induced phenylpropanoid metabolism. Plant Cell 7 1085 - 1097    DOI : 10.1105/tpc.7.7.1085
Hamberger B , Hahlbrock K 2004 The 4-coumarate:CoA ligase gene family inArabidopsis thalianacomprises one rare, sinapate-activating and three commonly occurring isoenzymes. Proc. Natl. Acad. Sci. USA 101 2209 - 2214    DOI : 10.1073/pnas.0307307101
Houghton PJ , Woldemariam TZ , Davey W , Basar A , Lau C 1995 Quantitation of the pinocembrin content of propolis by densitomety and high performance liquid chromatography. Phytochem. Anal. 6 207 - 210    DOI : 10.1002/pca.2800060406
Hwang EI , Kaneko M , Ohnishi Y , Horinouchi S 2003 Production of plant-specific flavanoes byEscherichia colicontaining an artificial gene cluster. Appl. Environ. Microbiol. 69 2699 - 2707    DOI : 10.1128/AEM.69.5.2699-2706.2003
Jangaard NO 1974 The characterization of phenylalanine ammonia-lyase from several plant species. Phytochemistry 13 1765 - 1768    DOI : 10.1016/0031-9422(74)85086-7
Jaganath IB , Crozier A 2010 Dietary Flavonoids and Phenolic Compound in Plant Phenolics and Human Health. Fraga CG (ed.). John Wiley & Sons Hoboken, New Jersey
Kim B-G , Lee E-R , Ahn J-H 2012 Analysis of flavonoid contents and expression of flavonoid biosynthetic genes inPopulus euramericanaGuinier in response to abiotic stress. J. Kor. Soc. Appl. Biol. Chem. 55 141 - 145    DOI : 10.1007/s13765-012-0025-0
Kim BG , Kim HJ , Ahn J-H 2012 Production of bioactive flavonol rhamnosides by expression of plant genes inEscherichia coli. J. Agric. Food Chem. 60 11143 - 11148    DOI : 10.1021/jf302123c
Kim MJ , Kim B-G , Ahn J-H 2013 Biosynthesis of bioactive O-methylated flavonoids inEscherichia coli. Appl. Microbiol. Biotechnol. 97 7195 - 7204    DOI : 10.1007/s00253-013-5020-9
Lee Y-J , Jeon Y , Lee JS , Kim B-G , Lee CH , Ahn J-H 2007 Enzymatic synthesis of phenolic CoAs using 4-coumarate: coenzyme A ligase (4CL) from rice. Bull. Kor. Chem. Soc. 28 365 - 366    DOI : 10.5012/bkcs.2007.28.3.365
Leonard E , Lim H-K , Saw P-N , Koffas MAG 2007 Engineering central metabolic pathways for high-level flavonoid production inEscherichia coli. Appl. Environ. Microbiol. 73 3877 - 3886    DOI : 10.1128/AEM.00200-07
Leonard E , Yan Y , Fowler Z , Li Z , Kim C-C , Lim K-H , Koffas MAG 2008 Strain improvement of recombinantEscherichia colifor efficient production of plant flavonoids. Mol. Pharm. 5 257 - 265    DOI : 10.1021/mp7001472
Lim CF , Fowler ZL , Hueller T , Schaffer S , Koffas MA 2011 High-yield resveratrol production in engineeredEscherichia coli. Appl. Environ. Microbiol. 77 3451 - 3460    DOI : 10.1128/AEM.02186-10
Liu R , Wu C-X , Zhou D , Yang F , Tian S , Zhang L 2012 Pinocembrin protects against β-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)-independent signaling pathways and regulating mitochondria-mediated apoptosis. BMC Med. 10 105 -    DOI : 10.1186/1741-7015-10-105
Miyahisa I , Funa N , Ohnishi Y , Martens S , Moriguchi T , Horinouchi S 2006 Combinatorial biosynthesis of flavones and flavonols inEscherichia coli. Appl. Microbiol. Biotechnol. 71 53 - 58    DOI : 10.1007/s00253-005-0116-5
Miyahisa I , Kaneko M , Funa N , Kawasaki H , Kojima H , Ohnishi Y , Horinouchi S 2005 Efficient production of (2S)-flavanones byEscherichia colicontaining an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68 498 - 504    DOI : 10.1007/s00253-005-1916-3
Park SR , Ahn MS , Han AR , Park JW , Yoon YJ 2011 Enhanced flavonoid production inStreptomyces venezuelae viametabolic engineering. J. Microbiol. Biotechnol. 21 1143 - 1146    DOI : 10.4014/jmb.1108.08012
Peng L , Yang S , Cheng YJ , Chen F , Pan S , Fan G 2012 Antifungal activity and action mode of pinocembrin from propolis againstPenicillium italicum. Food Sci. Biotechnol. 21 1533 - 1539    DOI : 10.1007/s10068-012-0204-0
Rasul A , Millimouno FM , Eltayb WA , Ali M , Li J , Li X 2013 Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed. Res. Int. 2013 1 -    DOI : 10.1155/2013/379850
Rösler J , Krekel F , Amrhein N , Schmid J 1997 Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol. 113 175 - 179    DOI : 10.1104/pp.113.1.175
Santos CNS , Koffas M , Stephanopoulos G 2011 Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13 392 - 400    DOI : 10.1016/j.ymben.2011.02.002
Vogt T 2010 Phenylpropanoid biosynthesis. Mol. Plant 3 2 - 20    DOI : 10.1093/mp/ssp106
Weston RJ , Mitchella KR , Allen KL 1999 Antibacterial phenolic components of New Zealand manuka honey. Food Chem. 64 295 - 301    DOI : 10.1016/S0308-8146(98)00100-9
Winkel-Shirley B 2001 Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126 485 - 493    DOI : 10.1104/pp.126.2.485
Wu J , Du G , Zhou J , Chen J 2013 Metabolic engineering ofEscherichia colifor (2S)-pincocembrin production from glucose by a modular metabolic strategy. Metab. Eng. 16 48 - 55    DOI : 10.1016/j.ymben.2012.11.009
Yan Y , Kohli A , Koffas MAG 2005 Biosynthesis of natural flavanones inSaccharomyces cerevisiae. Appl. Environ. Microbiol. 71 5610 - 5613    DOI : 10.1128/AEM.71.9.5610-5613.2005
Yang N , Qin S , Wang M , Chen B , Yuan N , Fang Y 2013 Pinocembrin, a major flavonoid in propolis, improves the biological functions of EPCs derived from rat bone marrow through the PI3K-eNOS-NO signaling pathway. Cytotechnology 65 541 - 551    DOI : 10.1007/s10616-012-9502-x
Yenjai C , Wanich S , Pitchuanchom S , Sripanidkulchai B 2009 Structural modification of 5,7-dimethoxyflavone fromKaempferia parvifloraand biological activities. Arch. Pharm. Res. 32 1179 - 1184    DOI : 10.1007/s12272-009-1900-z