Advanced
Performance Improvement Using an Automation System for Segmentation of Multiple Parametric Features Based on Human Footprint
Performance Improvement Using an Automation System for Segmentation of Multiple Parametric Features Based on Human Footprint
Journal of Electrical Engineering and Technology. 2015. Jul, 10(4): 1815-1821
Copyright © 2015, The Korean Institute of Electrical Engineers
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : February 16, 2014
  • Accepted : January 19, 2015
  • Published : July 01, 2015
Download
PDF
e-PUB
PubReader
PPT
Export by style
Article
Author
Metrics
Cited by
TagCloud
About the Authors
V.D. Ambeth Kumar
Corresponding Author: Dept. of Computer Science and Engineering, Panimalar Engineering College, India (ambeth_20in@yahoo.co.in)
S. Malathi
Dept. of Computer Science and Engineering, Panimalar Engineering College, India .(malathi_raghu@hotmail.com)
V.D. Ashok Kumar
Dept. of Computer Science and Engineering, St.Peter University, India. (akumar2879@gmail.com)
P. Kannan
Dept. of Electronics and Communication Engineering, Panimalar Engineering College, India. (pkannan2003@yahoo.com)

Abstract
Rapid increase in population growth has made the mankind to delve in appropriate identification of individuals through biometrics. Foot Print Recognition System is a new challenging area involved in the Personal recognition that is easy to capture and distinctive. Foot Print has its own dimensions, different in many ways and can be distinguished from one another. The main objective is to provide a novel efficient automated system Segmentation using Foot Print based on structural relations among the features in order to overcome the existing manual method. This system comprises of various statistical computations of various foot print parameters for identifying the factors like Instep-Foot Index, Ball-Foot Index, Heel- Index, Toe- Index etc. The input is naked footprint and the output result to an efficient segmentation system thereby leading to time complexity.
Keywords
1. Introduction
Biometric is mainly used for personal recognition based on the different characteristic of every individual nature of humans. It is broadly classified into two main category (i) High accuracy-oriented and (ii) Human friendly. High accuracy oriented in for infinite number of people namely finger print and iris where as the later one refers to a finite no. of people in a group such as co-workers or family. Therefore for a small group identification can be performed efficiently in biometric recognition using Footprint which is a challenging method now. Palm print, face, retina, voice, signature, keystroke, ear, gait and automatic face recognition [1] also plays an methods under specific conclusion [2] .
There are several other biometric systems existing today but there is always a need for a new technology and this system will be of apt use for certain special areas of application. This FPRS can be worked in two ways:
  • 1. Static mode: where the user will have to stand and his foot image will be captured by the sensors.
  • 2. Dynamic mode: The walk over mode, where the user can walk without any halt and the sensor will detect the footprint.
In today’s world, identity of individuals plays an important role in all fields. It helps to differentiate one person from another. Biometrics can be defined as a stream which deals with the identification or differentiation of individuals through their physical characteristics or traits. Among the various organs studied in biometrics, footprint is considered to be efficient because it differs from person to person and also spoofing is difficult.
2. Related Work
Weidong Wang et al [3] verified the concept of Footprint Heavy Pressure Surface Pick-up and Description. The distribution of footprint heavy pressure surface reflects the behaviour feature and the physiological feature of the human body. It is mentioned that footprint heavy pressure surface pick-up and description is the foundation of footprint biological feature identification.
Sean W. Yip, B.S. et al [4] analyzed the measurement of force distribution beneath the feet. The performance of the postural control system may be helpful in identifying the persons with an increased risk of falling. Foot position and orientation can also be extracted from force distribution without the need for manually tracing footprints.
LIU Guozhong et al [5] have proposed measurement system for 3-D foot shapes under different loads. A measurement system for 3-D foot shapes under different loads is described, which can automatically extract foot parameters such as Foot Length, Ball Width, Heel Width, Ball Girth, Toe Height, Instep Height, Arch Height, Ankle Height, Arch Curve and Footprint. The information on how the feet shape changes with loads is important for shoe designing, plantar stresses analysis and orthopaedic treatment.
Rong Wang et al [6] designed toe shaped recognition algorithm based on fuzzy neural networks. The characters of footprint shape, a toe shape description method, based on geometric characteristic values of toe image is proposed. Corner detection is carried out on toe region and the characteristic points which can describe the toe shape are confirmed by the edge of toe image.
Jaeseok Yun et al [7] proposed a biometric user identification method based on user’s gait. They divided obtainable features from user’s gait into two categories: (i) walking pattern, and (ii) stepping pattern (dynamic footprints). This paper considers an approach of identifying user with dynamic footprints.
Wei Jia et al [8] utilize a system to identify the new born babies using the foot image. This is implemented in the hospital maternity ward where the babies are swapped or changed. Here a coordinate system is defined to align the images, and a region of interest (ROI) is cropped. In recognition stage, four orientation feature-based approaches, Ordinal Code, BOCV, Competitive Code, and Robust Line Orientation Code, are exploited for recognition. This kind of approach can take high resolution photographs and then can be used for preprocessing and identification with a high accuracy.
V. D. Ambeth Kumar and M. Ramakrishnan [9] has implemented a new approach for FPRS using wavelet and Fuzzy Neural Network. The transformation of the footprint image is done by the wavelet to detect the edge and then according to the statistical distribution disciplinarians of different toe images the membership functions are constructed, keeping the angle and length as parameters. These obtained values are used as single judgement factor. The input to the neural network is given by computing the distance vector between the four model vectors and the comprehensive judgement vector. However only few features are taken into consideration for this recognition.
3. Proposed Work
Personal authentication is a critical issue for hospitals, birth centers and other institutions where multiple births occur and has not been well studied in the past. In this, a novel automated online newborn personal authentication system is proposed based on footprint recognition. Compared with traditional offline footprint scheme, the proposed automated system can capture digital footprint images with high quality. Besides low quality image, newborn offline footprint has drawbacks. Traditionally footprint images and their parameters are taken manually thereby it is a difficult task to form the database. This results in time consuming and also lacks in the performance measure
Fig. 1 , shows the working module consists of basically the input image which is a normal dirty footprint image which are either scanned or photographed. They are converted into grayscale images i.e., binary images that indicate black (0) and white (1) for showing the image impression. In order to perform morphological operations, regions are marked using the morphological marker. Then the connected components of a particular feature such as a toe are noted and a particular value is found using the ‘bwarea.bin’ function indicating the area of its presence. This is done by involving the creation of binary files that are required for execution of the morphological operation.
PPT Slide
Lager Image
System Structure
For example, a toe to be noted as an important distinguishing feature then its length height, depthness etc. are marked to a fixed level and its area is determined. Each of the above components of the toe is configured and its features are marked and separated. This is preceded by using a SVM (Support Vector Machine) which aids in developing, identifying and differentiating the evolving footprint over time. Here, 4 to 5 features of a selected component are recorded in a small database and trained using Supervised Neural Networks. The network contains more than 1 and less than 3 hidden layers that help in producing a relatively perfect match or mismatch when executed with proper conditions. This improves the accuracy and also minimizes the execution time. Various griming images are taken for different features and preprocessed generally and the test results given the performance in the identification of an individuals.
The various mathematical factors used during the process includes
  • ballfootindex=(maximumfootwidth/overallfootwidth) *100
  • ballheelindex = (maximumfootwidth/heelwidth)*100
  • instepfootindex= (minimumfootwidth/overallfootwidth) *100
  • heelindex = (heelwidth/heellength)*100
  • toeindex = (toewidth/toelength)*100
  • toeballindex = (toewidth/maximumfootwidth)*100
The FPRS system shown constitutes 4 modules namely Modules:
  • 1. Image Acquisition.
  • 2. Image Preprocessing.
  • 3. Image Segmentation.
  • 4. Image Recognition
- 3.1 Image acquisition
A raw image file contains processed data obtained from the image sensor of either a digital camera or image scanner. These raw files are not yet processed and therefore not perfect to be printed or edited. Normally, the image is processed where exact adjustments can be made before it is converted to a “positive” file format such as ‘.jpeg’' for storage, printing, or for further manipulation. The purpose of raw image format is to save with minimum loss of information, data obtained from the sensor, and the conditions surrounding the captured image. In this, a minimum of 50 left and right foot images from various individuals of both genders are obtained. It includes 35 males and 15 females.
Fig. 3 shows a Canon MG3170 flat-bed scanner for acquiring the image. The foot image is saved using JPEG format in a size range that varies from a minimum of 550× 190 pixels to 1024× 768 pixels as per the cropping proportion of execution code.
PPT Slide
Lager Image
Image Acquisition
Fig. 4 Shows a sample of footprint image obtained from the scanner.
PPT Slide
Lager Image
Raw Foot-Image
- 3.2 Image preprocessing
Image Preprocessing is the technique of enhancing and improving the quality of data images prior to computational processing. It involves removing low-frequency background noise, equalizing the intensity of the individual particles images, removing shadows and masking portions of images. After this ‘Image Filtering’ is performed is to reduce the noise present in the image. For this ‘Gaussian filtering’ is used which are characterized by narrow bandwidths, Sharp cutoffs, and low overshoots. First the image is captured and then imported to work for better enhancements using the ‘Adobe Photoshop CS5.1 Extended Edition’ editor. This stage plays a vital role where changes have been done to RGB range and threshold areas of the image. Due to this, the vibrancy areas of the image are increased to produce a better quality image after the preprocessing stage.
Fig. 5 gives simple example of the working process of the Image Preprocessing.
PPT Slide
Lager Image
Steps of image preprocessing process
- 3.3 Image segmentation
Image segmentation is the process of dividing digital image into multiple segments or parts (sets of pixels). The goal is to simplify change the representation of an image into a more understandable and easier image to analyze. This is used to locate objects and boundaries like lines, curves, etc. in images. Therefore it is the method of appointing a label to every pixel in an image such that pixels with the same label share certain or similar visual characteristics.
For example, the ‘region growing’ segmentation is used to segment the MR image of brain tumor. Region growing is a procedure that groups pixels or sub regions into larger regions. The result is a set of segments that collectively cover the entire image or a set of points in the form of contours. Similarly in footprint, the connected components of a particular feature such as toe, heel, ball region, and joint region are noted and a particular value is found using the ‘bwarea.bin’ function denoting the area of its presence. The scanned and preprocessed image is then broken down into parts.
- 3.4 Image recognition
Image Recognition refers to the process where an input image is fed into a recognizing engine and compared with a set of test images. The process needs a minimum of one input image, a database containing a set of authorized images and a test /sample image for comparison. Here recognition method is implied and applied in such a way that it aids in performing and supporting the authentication process. Before the image recognition is initiated, image segmentation must be done.
For this, an automation system is developed which focuses on image segmentation. The output of the system gives the exact value for the various features namely.
  • a). Foot Length
  • b). Maximum Foot Width
  • c). Minimum Foot Width
  • d). Toe-Length
  • e). Toe-Width
  • f). Heel-Length
  • g). Heel-Width
These features are the vital parts of the segmented image of the raw-foot which are further used to improvise the 6 factors that help in determining the perimeter and area values to be stored in the database.
Fig. 6 displays the various measurements of each of the above mentioned factors:
PPT Slide
Lager Image
Measurement of each factor
where,
  • 1represents the ‘footlength’
  • 2represents the ‘maximumfootwidth’
  • 3represents the ‘minimumfootwidth’
  • 4represents the ‘toelength’
  • 5represents the ‘toewidth’
  • 6represents the ‘heellength’
  • 7represents the ‘heelwidth’
  • Foot Length: This is the maximum distance from the tip of the heel to the tip of the big toe or of another toe, whichever protrudes the farthest.
  • Maximum Foot Width: This indicates the maximum width at the ball, across the heads of first and fifth metatarsal bones of the foot.
  • Minimum Foot Width: Represents the minimum foot width, usually across the arch of the foot.
  • Toe-Length: The maximum length of the big toe measured from the outermost tip to the ball line.
  • Toe-Width: The maximum width of the big toe.
  • Heel-Length: The maximum length of the heel portion along the central line of the footprint. An outline is marked encircling the heel area as observed visually before measuring.
  • Heel-Width: The maximum width of the heel measured across the encircled area.
Using these features, that include main areas of the foot such as toe, heel, joint, and the ball regions, 6 various factors are developed to obtain the perfect values for the foot parameters. To determine the values of these factors a set of formulas are applied to each factor. They are
  • Ball Foot Index
  • Ball Heel Index
  • Instep Foot Index
  • Heel Index
  • Toe Index
  • Toe Ball Index
The basic Formulas used to determine values for the above 6 factors are :
  • a) ballfootindex= (maximumfootwidth/overallfootwidth) *100
  • b) ballheelindex = (maximumfootwidth/heelwidth)*100
  • c) instepfootindex=(minimumfootwidth/overallfootwidth) *100
  • d) heelindex = (heelwidth/heellength)*100
  • e) toeindex = (toewidth/toelength)*100
  • f) toeballindex = (toewidth/maximumfootwidth)*100
4. Experimental Results and Analysis
In our method, simple and an effective image segmentation process is done using the bwarea.bin function present as an in-built function in MATLAB 7.7 software tool.
Fig. 7 shows the image of user1.jpg. This right foot image in the input for the automation system where it generates the value of different features and parametric factors from the image as given in Table 1 :
PPT Slide
Lager Image
User1.jpg
Different types of parameters for single person
PPT Slide
Lager Image
Different types of parameters for single person
The process of image acquisition is performed by obtaining the various right & left images of men & women. The Canon MG3170 flat-bed scanner is the equipment used as the device for capturing the raw foot-image.
The preprocess procedure is followed by enhancing the raw foot-image and followed by image segmentation. The feature extraction technique is done in image segmentation. Table 2 and Table 3 : gives the total of 7 factors obtained after segmentation for different individual’s persons.
Find the parameter for individual persons
PPT Slide
Lager Image
Find the parameter for individual persons
Find the factors for individual person
PPT Slide
Lager Image
Find the factors for individual person
Fig. 8 represents the sample output screen shot.
PPT Slide
Lager Image
Other Sample Parameters
Fig. 9 gives the 7 parametric feature values of single person from the automated system which clearly indicates that each feature has different combination of values for single person.
PPT Slide
Lager Image
Different Parameters for User 1
Fig. 10 depicts the results of the automation system of different factors for single person. It was found that the performance has improved in the automatic segmentation process after testing its respective features.
PPT Slide
Lager Image
Different Factors for User 1
5. Conclusion
We have developed an automation system for the recognition of individual using footprint based on the segmentation features of the foot. This system is superior to the previously separated manual method (Suneel, 1980). In this proposed method, the factors are divided using the statistical formulas and the corresponding values are stored in the database.
This can be extended further for the human recognition by taking the features as one of the injects to train through ANN (Artificial Neural Network) for various level.
Acknowledgements
We the members of this project, acknowledge our sincere gratitude for the excellent support extended to us by the management for providing all the required facilities. Our sincere thanks go to our respectful guide who has extended his support throughout the entire project with his valuable suggestions and guidance
BIO
V.D. Ambeth Kumar received Ph.D (CSE) from Sathyabama University, India in 2013. He pursued his M.E (CSE) degree in Annamalai University, Chidambaram and B.E (CSE) in Madurai Kamaraj University, Madurai, Tamil Nadu in the year 2006 and 2004. He has a rich experience in the field of Computer Science close to a decade and he is currently working as an Associate Professor at Panimalar Engineering College, Chennai, India. He has contributed in Technology initiatives and published books on Theory of Computation, Design and Analysis of Algorithms and Advanced Computer Architectures. His Articles are published in 10 International Journals, 6 National Journals. He has also presented papers in more than 28 National and International conferences. He is a recognized supervisor of Anna University. He is guide four research scholars for Ph.D progemme. He is the recipient of the Best Teacher award of PEC in 2011. His work has been profiled broadly such as in Image Processing, pattern Recognition, Neural Network and Network. His research Interests include Computational Model, Compiler design, Data Structure and Microprocessors. He is Life Member of ISTE, IAENG and ACEEE.
S. Malathi obtained her Doctorate from Sathyabama University, Chennai in the field of Software Engineering. She has more than 18 years of teaching experience and currently working as Professor, Dept. of CSE, Panimalar Engineering College, Chennai. She has published/presented several research papers in peer-reviewed International/National Journals and Conferences, respectively. She has recently received the award from CSI for “Best Paper Presenter in International Conferences”. She has guided number of projects and a few of them have received National Recognition. Her future interests lay in the field of Software Engineering, Image Processing and Networks.
V.D. Ashok Kumar is presently working as an Assistant Professor and has 6 years of teaching experience in Computer Science engineering. He completed his B.E. (CSE) from Madras University and M.E. (CSE) from Annamalai University. He is pursing Ph.D(CSE) in St.Peter Uninersity. He has published papers in various National and International conferences and Journals. His areas of interests are data Structure, theory of computation, Compiler design and Image Processing.
P.Kannan obtained his Doctorate from TPES University, Chennai in the field of Image Processing. He has more than 22 years of teaching experience and currently working as Professor and Head, Dept. of ECE, Panimalar Engineering College, Chennai. He has published / presented several research papers in peer-reviewed International / National Journals and Conferences, respectively. He has contributed in Technology initiatives and published books on Wireless Sensor Networks, Optical Communication and Networking and Communication Theory. He has guided number of projects and a few of them have received National Recognition. His future interests lay in the field of Communication, Image Processing and Networks. He is Member of IEEE, ISTE and IETE.
References
Sukthankar R. , Stockton R. 2001 “Argus: the digital doorman” IEEE Intelligent Systems 16 (2)
Liu S. , Silverman M. 2001 “A practical guide to biometric security Technology” IEEE IT Pro 27 - 32
Wang Weidong , Ping Xijian , Ding Yihong 2004 “Footprint Heavy Pressure Surface Pick-up and description” Proceedings of the Third international Conference on image and Graphics, IEEE First Symposium on Multi Agent Security and Survivability 278 - 281
Sean W. , Yip B.S. , Prieto Thomas E. 1996 “A System for Force Distribution Measurement beneath the feet” IEEE Int. Conference on Biomedical Engineering 32 - 34
Liu Guozhong , Wang Boxiong , Shi Hui , Luo Xiuzhi , Wang Rui 2006 “Measurement system for 3-D shapes under Different Loads” International Technology and Innovation Conference 246 - 250
Wang Rong , Bu Fanliang , Jin Hua , Li Lihua 2007 “Toe shaped recognition algorithm based on fuzzy neural networks” IEEE Third International Conference on Natural Computation (ICNC 2007) 2 734 - 741
Yun Jaeseok , Abowd Gregory , Woo Woontack , Ryu Jeha 2007 “Biometric user identification with-dynamic footprint” IEEE Int. Conference on Bio Inspired Computing: Theories and Applications 225 - 230
Jia Wei , Cai Hai-Yang , Gui Jie , Hu Rong-Xiang , Lei Ying-Ke , Wang Xiao-Feng 2011 “Newborn footprint recognition using orientation feature” Neural Computer and Applications Springer
Ambeth Kumar V.D. , Ramakrishnan M. 2013 “A comparative study of fuzzy evolutionary techniques for footprint recognition and performance improvement using wavelet-based fuzzy neural network” Int. J. of Computer Applications in Technology 48 (2) 95 - 105    DOI : 10.1504/IJCAT.2013.056016
Qamra Suneel R. 1980 “Naked foot marks–A preliminary study of identification factors” Forensic Science International 16 (2) 145 - 152    DOI : 10.1016/0379-0738(80)90167-X