Advanced
Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model
Time Series Prediction of Dynamic Response of a Free-standing Riser using Quadratic Volterra Model
Journal of the Society of Naval Architects of Korea. 2014. Aug, 51(4): 274-282
Copyright © 2014, The Society of Naval Architects of Korea
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Received : August 13, 2013
  • Accepted : April 28, 2014
  • Published : August 20, 2014
Download
PDF
e-PUB
PubReader
PPT
Export by style
Share
Article
Author
Metrics
Cited by
TagCloud
About the Authors
유일 김
yooilkim@inha.ac.kr

Abstract
Time series of the dynamic response of a slender marine structure was predicted using quadratic Volterra series. The wave-structure interaction system was identified using the NARX(Nonlinear Autoregressive with Exogenous Input) technique, and the network parameters were determined through the supervised training with the prepared datasets. The dataset used for the network training was obtained by carrying out the nonlinear finite element analysis on the freely standing riser under random ocean waves of white noise. The nonlinearities involved in the analysis were both large deformation of the structure under consideration and the quadratic term of relative velocity between the water particle and structure in Morison formula. The linear and quadratic frequency response functions of the given system were extracted using the multi-tone harmonic probing method and the time series of response of the structure was predicted using the quadratic Volterra series. In order to check the applicability of the method, the response of structure under the realistic ocean wave environment with given significant wave height and modal period was predicted and compared with the nonlinear time domain simulation results. It turned out that the predicted time series of the response of structure with quadratic Volterra series successfully captures the slowly varying response with reasonably good accuracy. It is expected that the method can be used in predicting the response of the slender offshore structure exposed to the Morison type load without relying on the computationally expensive time domain analysis, especially for the screening purpose.
Keywords
1. 서 론
에너지 수요의 지속적인 증가에 따라 해저 유전 개발은 지속적으로 심해로 진행해 나가고 있는 추세이며, 이에 따라 라이저와 계류라인에 연결된 부유식 구조물의 적용이 점차 확대되고 있다. 부유체의 위치제어와 원유의 이송을 위해 설치되는 세장형 구조인 계류라인과 라이저는 해상의 불규칙파에 지속적으로 노출되므로 구조물의 안전성 확보를 위해 설계 단계에서 세심한 검토가 요구된다. 이러한 세장형 구조물은 그 구조적 거동 및 작용하중의 특성상 다양한 형태의 비선형적 요소가 존재함으로 인해 설계자들은 수치해석상 큰 비용을 요구하는 시간영역 해석에 의존할 수 밖에 없는 실정이다. 세장형 해양구조물의 동적 응답을 지배하는 해양 환경하중은 다양한 형태로 존재하나 그 중 중요한 부분을 차지하고 있는 것이 파랑하중에 기인한 파랑 관성력 및 파랑 저항력이다. 이 두 종류의 힘은 일반적으로 Morison의 식에 의해 결정되는데, 전자의 경우 유체입자의 가속도에 비례하는 성분으로, 후자의 경우 유체입자와 구조물의 상대속도의 제곱에 비례하는 성분으로 주어진다. 파랑 저항력의 속도 제곱항은 합 주파수 및 차 주파수 성분의 추가적인 2차항 성분의 힘을 유발하게 되는데, 일반적으로 차 주파수 성분의 저주파 2차항 성분의 힘이 고유주파수가 매우 낮은 세장형 구조물의 대변형 응답을 야기하는 것으로 알려져 있다 ( Hong, 1999 ; Kim, et al., 2002 ; Lee, et al., 2012 ; Hong & Koterayama, 2004 ).
파랑하중에 노출된 세장형 구조물의 응답을 얻기 위해서는, 일반적으로 시간영역 비선형 유한요소 해석을 이용하는 것이 보통이다. 파랑하중의 불규칙성으로 인해 특정해역의 해상상태는 매우 많은 수의 단기해상상태의 확률분포로 표현되는 파랑 산포도 (wave scatter diagram)로 표현되는 것이 일반적인데, 설계 하중의 장기응답예측 혹은 피로수명의 예측을 위해서는 매우 많은 수의 단기해상상태에 대한 비선형 해석을 모두 수행하여야 하는 부담이 발생한다.
라이저 및 계류계 동적응답의 비선형성으로 인해 필연적으로 수반되는 시간영역 해석의 부담을 덜기 위해 다양한 연구들이 수행되었다 ( Vazquez-Hernandez, et al., 2011 ; Rodrigues, et al., 2007 ; Mazaheri, et al., 2004 ; Yasseri, et al., 2010 ). Hosseini Kordkheili, et al. (2011) 은 대변형을 수반하는 라이저의 동적응답 해석을 위해 보다 효율적인 유한요소 정식화를 제안하였다. 그들은 라이저의 효율적인 대변형 응답해석을 위해 개정 라그랑지안(updated lagrangian) 정식화를 기반으로 하여 여타의 선형화 기법이 갖는 부정확성을 극복하기 위한 새로운 선형화 기법을 제안하였다. Low and Langley (2008) 는 부유체와 연성된 계류라인 및 라이저의 응답 예측을 위해 파랑 주파수 영역의 응답은 주파수 영역에서, 저주파수 영역의 응답은 시간영역에서 수행하는 복합된 시간/주파수 영역 해석기법을 제안하였다. Low (2011) 는 상기의 기법을 계류라인과 라이저의 피로수명 예측에 적용하였으며, 비선형 시간영역 해석의 결과와 비교적 잘 일치하는 결과를 얻었다. 비선형 시간영역 해석의 효율화를 위해 인공 신경망 기법을 적용하고자 하는 연구들도 다수 수행되었다. Pina, et al. (2013) 은 계류라인 및 라이저에 발생하는 장력을 얻기 위해 인공 신경망 기법을 적용하였다. 그들은 부유체의 운동응답을 기진원으로 하는 계류라인 및 라이저의 거동을 NARX(Nonlinear Autoregressive with Exogenous Input) 기법을 통해 시스템 식별 해석을 수행하고 이를 이용하여 다양한 단기해상상태에서의 장력을 예측하였다. NARX 기법을 이용한 동적응답의 예측은 매우 유용한 방법이기는 하나 식별된 시스템을 통해 시간영역에서 직접 응답을 예측하는 방법은 방대한 양의 데이터와 비교적 큰 네크워크 구조를 가지지 않는 한 해의 발산 등으로 인해 예측의 신뢰성이 보장되지 않는 단점을 가지고 있다. 이러한 이유로 본 연구에서는 NARX 기법으로 식별된 시스템을 주파수 영역에서 분석하여 고차의 주파수 응답함수를 도출하고 이를 토대로 시계열을 예측하는 시도를 수행하였다.
NARX 및 TDNN(Time Delayed Neural Network) 기법과 조화 진단(harmonic probing) 기법을 조합하여 미지의 비선형 시스템을 식별하고 식별된 시스템의 주파수 응답함수를 도출하는 연구들이 다수 수행되었다. Wray and Green (1994) 는 데이터 베이스를 통해 식별된 TDNN의 파라미터들을 통해 대상 시스템의 Volterra 커널을 유도하였다. Chance, et al. (1998) 는 Volterra 커널과 TDNN 파라미터 간의 연계성을 NARX로 확장하였으며, 조화진단 기법을 적용하여 식별된 NARX의 파라미터를 통해 1차 및 2차의 주파수 응답함수를 도출하고 이를 2차 및 3차의 강성 항이 포함된 Duffing 방정식에 적용하여 도출된 주파수 응답함수를 검증하였다.
본 연구에서는 Chance, et al. (1998) 에 의해 제안된 방법을 차 주파수 영역까지 확대하여 Morison 하중에 의해 기진되는 자유지지 라이저의 1차 및 2차 주파수 응답함수를 구하고 이를 통해 라이저의 동적 응답 시계열을 예측하는 시도를 하였다. NARX 모델의 파라미터를 결정하기 위해 가우시안 백색소음(gaussian white noise)의 특성을 가지는 파랑 하중에 대한 비선형 유한요소 해석을 수행하여 얻어진 데이터를 이용하여 시스템을 식별하였으며, 식별된 NARX 모델에 조화진단 기법을 적용하여 주파수 응답함수를 도출하였다. 얻어진 주파수 응답함수를 2차의 Volterra 모델에 적용한 후 임의의 단기해상상태에 노출되는 구조물의 동적 응답 시계열을 예측하고 이를 시간영역 비선형 유한요소해석의 결과와 비교 검토 하였다.
2. 이론적 배경
- 2.1 Volterra 급수
Volterra 급수는 임의의 동적 시스템의 약한 비선형(weakly nonlinear) 응답을 모델링하는 데에 널리 적용되는 기법이다. Volterra 급수의 기본 개념은 Taylor 급수와 유사하나 동적 시스템의 기억효과를 반영한다는 점에서 Taylor 급수와 차이를 지닌다. 약한 비선형 문제로의 제한은 무수히 많은 고차항을 고려하는 것이 불가능한 현실적인 이유 때문인데, 고차항 계산의 난이함으로 인해 일반적으로 최대 4차 혹은 5차 항까지만 고려된 약한 비선형 문제에 제한되어 적용된다. 외력 x 에 노출된 시스템의 응답 y 는 식 (1)의 Volterra 급수로 표현이 가능하다.
PPT Slide
Lager Image
여기서, hn n 차의 Volterra 커널을 의미하며, N =2인 경우 식 (2)와 같이 2차 Volterra 급수로 귀결된다.
PPT Slide
Lager Image
식 (2)의 첫번째 항은 일반적으로 잘 알려진 외력과 충격응답함수의 컨볼루션 적분이며, 두번째 항은 일반화된 충격응답함수와 외력의 연성 간의 고차 컨볼루션 적분이다. 충격응답함수는 시스템의 고유 특성을 나타내는 것으로 주파수 영역으로 변환하는 경우 시스템의 주파수 응답함수가 된다. 1차 및 2차 Volterra 커널의 퓨리에 변환은 식 (3)과 같이 각각 시스템의 LTF(Linear Transfer Function) 및 QTF(Quadratic Transfer Function)가 된다.
PPT Slide
Lager Image
Volterra 커널 혹은 주파수 응답함수가 얻어지면 임의의 하중하에서 시스템의 응답은 Volterra 급수를 통해 손쉽게 얻을 수 있다. 2개의 조화 기진력이 외력으로 작용하는 경우 시스템의 1차 응답 y 1 및 2차 응답 y 2 는 식 (4)와 같이 주어진다.
PPT Slide
Lager Image
여기서, Aj , ωj 및 ∅ j 는 각각 외력으로 주어진 조화 기진력의 크기, 주파수 및 위상각을 의미한다. 식 (4)에 보인 바와 같이 2차 응답은 외력으로 주어진 조화 기진력의 합 및 차 주파수 성분으로 구성됨을 알 수 있다.
- 2.2 NARX 모델
NARX 모델은 인공 신경망 기법의 일종으로 주어진 시스템의 입력 값과 출력 값을 이용해 비선형성을 갖는 임의의 시스템을 식별해 내는 비선형 시스템 식별 기법 중 하나이다. ‘AR’은 자기 회귀(autoregressive)를 의미하는 것으로 현재 시간에서의 시스템 출력 값은 과거의 시스템의 입력 값은 물론이며, 출력 값에도 의존하여 결정됨을 의미한다. NARX의 AR이 부재하는 경우 시스템의 출력 값이 단순히 과거의 시스템 입력 값에만 의존하는 TDNN 모델로 귀결된다. 일반적으로 노이즈가 포함된 실험데이터의 분석을 위해서는 이동 평균기법을 적용한 NARMAX(Nonlinear Autoregressive Moving Average with Exogenous Input) 기법이 널리 적용되는데 ( Peng, et al., 2010 ), 본 연구에서 다루는 데이터들은 수치해석을 통해 얻어진 값들이므로 NARX 기법을 적용하였다. 식 (5)는 미지의 함수 f로 표현된 NARX 모델의 수학적 표현을 나타낸다.
PPT Slide
Lager Image
여기서,
PPT Slide
Lager Image
은 시간 ti 에서 예측된 시스템의 출력 값을 의미하며, 벡터 { y }, { x } 은 과거의 시스템의 실제 출력 값 및 입력 값을 나타낸다. NARX 모델은 Fig. 1 에 보인 바와 같이 입력층, 은닉층, 출력층이 연속으로 배치된, 동적으로 작용하는 3열 퍼셉트론(three layer perceptron) 모델의 형태를 지닌다.
PPT Slide
Lager Image
Three layer perceptron model
입력층은 시스템의 특정 과거 시간부터 현재까지의 입력 값 및 출력 값을 포함하고 있으며, 이를 은닉층으로 넘기는 역할을 수행한다. 은닉층으로 넘어온 입력 벡터들은 가중 파라미터로 구성된 행렬 [ U ] 및 [ V ]에 곱해져 가중합으로 변환된다. 변환된 입력 벡터들은 비선형 효과를 고려하기 위해 도입된 활성함수로 넘겨지고, 활성화 된 벡터들은 출력층에서 다시 가중합되는 과정을 거친다. 은닉층의 활성함수는 일반적으로 쌍곡선 탄젠트 함수 혹은 일반 다항식의 형태를 띠는데, 주어진 시스템에 대해 상이한 활성함수를 적용하는 경우 서로 다른 가중 파라미터를 최적의 결과로 얻게 됨으로 인해 활성함수의 선택에는 큰 제약이 따르지 않는다.
식 (6)은 상기에 언급된 일련의 과정을 수학적으로 표현한 것이다.
PPT Slide
Lager Image
여기서, { b }와 s 는 바이어스 효과를 반영하기 위해 도입된 바이어스 파라미터를 의미한다.
식 (6)은 주어진 시스템의 입력 값과 출력 값의 상관관계를 내연적으로 표현한 것으로 가중 파라미터 및 바이어스 파라미터 등과 같은 네트워크의 파라미터를 통해 표현된 시스템의 수학적 표현이다. 시스템 식별 작업은 기 준비된 입력 및 출력 값을 이용하여 네트워크 파라미터를 결정하는 과정으로 이해될 수 있으며 이는 실험 및 수치해석을 통해 준비된 입/출력 데이터를 기반으로 수행된다. 네트워크 파라미터들은 네트워크가 예측하는 시스템의 출력 값과 시스템의 진 출력 값 간의 평균제곱오차가 최소가 되도록 적응적으로 결정되는데, 인공 신경망 기법에서는 일반적으로 경사하강법(gradient descent method)을 적용하는 것이 보통이다. 식 (7)은 경사하강법을 통해 최소화 되어야 할 목적오차함수와 네트워크 파라미터의 이동 방향을 나타낸다. 목적오차함수의 두번째 항은 네트워크의 과적합(overfitting)을 방지하기 위해 도입된 정규화 항으로, 네트워크의 성능을 향상시켜주는 역할을 수행하는 것으로 알려져 있다 ( Mackay, 1992 ).
PPT Slide
Lager Image
여기서,
PPT Slide
Lager Image
은 갱신된 네트워크 파라미터이며,
PPT Slide
Lager Image
은 이전 단계에서의 네트워크 파라미터를 나타낸다. η 는 학습율을 의미하는 것으로 현재 단계에서 결정된 방향으로의 네트워크 파라미터의 이동거리를 나타내며, Nω 는 네트워크 파라미터의 전체 개수를 의미한다.
식 (6)에 보인 NARX 모델은 시간영역에서 직접적으로 시스템의 출력 값을 예측하는 데에 적용할 수 있으나, 시스템의 진 출력 값에 대한 초기치가 존재하여야 한다는 점과 시간영역에서의 오차의 누적으로 인한 출력 값의 발산 등의 문제를 극복하여야 하는 단점을 지니고 있다. 그와는 달리 주파수 영역 접근법은 시스템의 진 출력에 대한 초기치에 대한 정보가 필요 없으며, 식별된 시스템이 약간의 오차를 내포하고 있더라도 해의 발산으로 이어지지 않는다는 장점을 지니고 있다.
- 2.3 조화진단(harmonic probing) 기법
조화진단 기법은 Bedrosian and Rice (1971) 에 의해 최초로 제안되었으며 후에 Billings and Tsang (1989) 에 의해 이산화된 시계열로 확대 적용되었다. 주어진 시스템에 대한 미분 방정식이 도출되었거나 시스템 식별법을 통해 시스템의 특성이 수학적으로 표현된 경우 조화진단 기법을 통해 시스템의 주파수 응답함수를 구할 수 있다. 1차 주파수 응답함수를 얻기 위해서는 먼저 주어진 시스템에 ω 의 주파수를 가지는 조화 기진력을 부가하고 시스템의 응답 중 ω 의 주파수를 가지는 성분과 비교하는 과정을 거친다. ω 의 주파수를 가지는 조화 기진력을 받는 임의의 시스템의 응답은 식 (8)과 같은 형태로 표현이 가능하다.
PPT Slide
Lager Image
식 (6)에 보인 NARX 모델은 쌍곡선 탄젠트 함수로 표현이 되어 있으므로 테일러 전개를 통하여 다항식으로 변환함으로써 대상 시스템에 대한 주파수 성분 별 분석이 용이해 진다. 일련의 과정은 Chance, et al. (1998) 에 상세히 기술되어 있으므로 여기서는 생략한다. 전술한 과정을 통해 시스템을 수학적으로 표현한 식 (6)은 식 (9)와 같은 형태로 귀결된다.
PPT Slide
Lager Image
여기서, 벡터 { TH ′}는 tanh (1) ( bj ) 을 의미하며, *는 벡터의 성분별 곱을 나타내는 연산자이다. { Δω }는 지연 연산자로 시스템의 과거 입력 및 출력은 식 (10)과 같이 지연 연산자로 표현이 가능하다.
PPT Slide
Lager Image
식 (9)를 정리하면 최종적으로 1차 주파수 응답함수를 식 (11)과 같이 네트워크 파라미터 및 지연 연산자로 표현된 형태로 얻을 수 있다.
PPT Slide
Lager Image
비선형 시스템의 응답을 예측하기 위해서는 1차 주파수 응답함수 뿐만 아니라 고차의 주파수 응답함수를 얻을 필요가 있다. 2차 주파수 응답함수를 얻기 위해서는 ω 1 ω 2 의 주파수를 가지는 2개의 조화 기진력을 시스템에 부가한다. 이때 기대되는 시스템의 응답은 식 (12)와 같은 형태로 표현이 가능하다.
PPT Slide
Lager Image
식(12)는 시스템의 응답이 두 개의 조화 기진력에 대한 1차 응답 성분과 두 조화 기진력의 합 ( ω 1 > 0, ω 2 > 0) 및 차 ( ω 1 > 0, ω 2 < 0) 주파수에 기인하는 2차 응답 성분으로 구성되어 있음을 나타낸다. 1차 주파수 응답함수의 경우와 같이 식 (6)과 식 (12)를 조합하면 식 (13)과 같이 2차 주파수 응답함수를 얻을 수 있다.
PPT Slide
Lager Image
여기서, { TH ″}는 tanh (2) ( bj ) 를 의미하며, 스칼라량 D 및 벡터 { A }, { B }, { C }는 식 (14)와 같이 얻어진다.
PPT Slide
Lager Image
식 (11)과 식 (13)에 주어진 시스템의 1차 및 2차 주파수 응답함수를 식 (14)의 Volterra 급수에 대입함으로써 임의의 외력을 받는 비선형 시스템의 응답을 2차의 정확도로 손쉽게 예측할 수 있다. 이러한 일련의 과정을 불규칙 파랑하중을 받는 라이저의 동적 응답 예측에 적용하고자 한다.
3. 라이저의 응답 예측
- 3.1 해석 모델
앞서 언급된 방법론을 비교적 단순화된 라이저 모델의 동적 응답 예측문제에 적용하여 방법론의 유효성을 검증하였다. 460m의 길이를 가지는 균일단면의 라이저가 플로터가 연결되지 않은 상태에서 동일 수심의 해저 바닥에 위치한 지지부에 힌지 연결된 것으로 가정하였다. 라이저는 연강재질로 제작된 것으로 가정하였으며, 400mm의 외경과 16mm의 두께를 가지는 것으로 하였다. 라이저에 작용하는 환경하중은 파랑에 의한 관성력 및 저항력으로 식 (15)에 보인 바와 같이 Morison 식에 따라 추정하였다.
PPT Slide
Lager Image
여기서, ρ 는 해수의 밀도를 D 는 라이저의 외경을 나타낸다. VR 은 유체입자와 구조물의 상대속도를 나나태며, A 는 유체입자의 가속도를 의미한다. CD CI 는 각각 저항계수 및 관성계수로서 본 해석에 적용한 값은 0.7과 1.5이다. 유체입자의 속도 및 가속도는 선형 중력파 이론을 기반으로 얻어졌으며, 구조물의 동적응답을 얻는 것이 목표이므로 조류에 의한 정하중은 고려되지 않았다. 라이저와 같은 세장형 해양구조물은 파랑 하중의 차 주파수 성분으로 인해 저주기의 대변형 거동을 보이는 것이 일반적이므로 라이저의 구조응답은 대변형을 고려한 비선형 해석을 통해 계산하였다. 수치계산은 상용유한요소 프로그램인 ABAQUS Ver.6.10을 이용하여 수행하였다.
NARX 모델의 네트워크 파라미터를 결정하기 위해서 0.1~1.5 rad/sec에 걸친 백색소음의 특성을 가지는 파랑하중을 구조물에 부가하여 구조물의 동적응답을 얻었으며, 이를 통해 시스템을 식별하고 주파수 응답함수를 도출하였다. 백색소음의 특성을 가지는 파랑하중은 시스템이 모든 주파수 성분에 걸쳐 같은 크기의 기진력을 경험하게 하는 것으로 시스템의 특성이 모든 주파수 영역에 대해 고른 정확도를 유지하게 하기 위함이다.
- 3.2 시스템 식별
시스템 식별에 사용될 입력 값과 출력 값에 대한 시계열이 비선형 유한요소해석을 통해 얻어졌으므로, 이를 이용하여 네트워크를 학습시켜 최적화된 네크워크 파라미터를 도출하였다. 시스템의 입력은 불규칙 파랑의 파고이며 시스템의 출력은 라이저 최상단 위치에서의 수평방향 변위로 설정하였다. NARX 모델에 적용된 뉴런의 개수는 7개이며 입력 및 출력 값의 길이 또한 7로 하였다. Fig. 2 는 경사 하강법을 통해 결정된 NARX 모델의 시간 영역에서의 예측 성능을 나타내는 그림으로, 시스템의 입력 및 진 출력을 이용하여 다음 한 스텝의 출력을 예측하는 개방 루프의 예측과, 시스템이 예측한 출력을 입력으로 피드백 받아 다음의 여러 스텝의 출력을 연속적으로 예측하는 폐쇄 루프의 예측 결과를 보여준다. 개방 루프의 경우 매우 정확한 예측 결과를 주는 것을 확인할 수 있으나, 실 적용 시에 사용될 폐쇄 루프의 경우 네크워크 학습에 적용된 데이터를 대상으로 함에도 불구하고 그 정확도가 상대적으로 떨어지는 것을 확인할 수 있다. 폐쇄 루프의 예측 성능을 향상시키기 위해서는 자유도가 높은 네트워크 구조를 이용하여 보다 많은 데이터를 통한 학습이 필요한데 이는 방대한 계산시간을 요구하는 작업으로 그 효용성이 상대적으로 떨어진다. NARX 모델의 이러한 단점을 극복하기 위해서 본 연구에서는 식별된 NARX 모델로부터 주파수 응답함수를 추출하는 주파수 영역 접근법을 시도하였다.
PPT Slide
Lager Image
Network performance (solid: simulation, dotted: prediction)
Fig. 3 은 NARX 모델에 조화진단 기법을 적용하여 도출한 1차 및 2차 주파수 응답함수를 나타낸다. 1차 주파수 응답함수의 크기는 주파수가 작아질수록 커지는 경향을 보이는데, 이는 고려 대상 구조물의 고유주파수가 매우 낮은 영역에 존재하고 있음을 간접적으로 나타내는 결과로 이해할 수 있다. 2차 주파수 응답함수는 합 주파수 응답함수와 차 주파수 응답함수로 구분이 되는데, 합 주파수 응답함수의 경우 그 크기가 상대적으로 매우 작아 별도로 도시하지 않았다. 합 주파수의 응답이 상대적으로 작게 나타나는 것은 구조물의 고주파 응답들이 유체입자와 구조물의 변형속도의 제곱에 비례하여 작용하는 파저항력에 의하여 빠르게 감쇠되기 때문인 것으로 판단된다. Fig. 3(b) 에 보인 차 주파수 응답함수의 경우, ω 1 ω 2 ≈ 0인 주파수 영역에서 그 크기가 크게 나타남을 알 수 있는데, 이는 구조물이 불규칙 파랑 하중에 의해 기진될 때 파랑하중의 차 주파수 성분이 생성하는 저주파 영역의 응답이 크게 나타나리라는 예측을 가능하게 해주는 결과이다.
PPT Slide
Lager Image
Frequency response function of riser top displacement
Fig. 4 는 도출된 주파수 응답함수를 Volterra 급수에 적용하여 생성한 시스템 응답의 시계열을 네트워크 학습에 적용한 시스템 응답의 시계열과 비교 도시한 그림이다. Fig. 4(a) 에서 확인할 수 있듯이 1차 성분만을 이용하여 생성한 시계열의 경우 시스템의 응답을 비교적 근사적으로 재현해 내는 것을 확인할 수 있으나, Fig. 4(b) 의 경우와 같이 2차 성분까지 포함하는 경우 상대적으로 더욱 정확한 예측 결과를 얻을 수 있음을 확인할 수 있다.
PPT Slide
Lager Image
Time history of the horizontal displacement of riser top(solid: simulation, dotted: prediction)
Fig. 5 Fig. 4 에 보인 시계열을 퓨리에 변환하여 얻은 응답 스펙트럼을 나타낸다. 응답 스펙트럼을 통해 확인할 수 있듯이 1차 성분을 통해 생성된 시계열은 약 0.5rad/sec 이하의 저주파수 영역에서 상대적으로 작은 에너지를 지니고 있으며, 2차 성분까지 고려한 시계열의 경우 이러한 차이가 없어지게 된다. 이러한 경향은 Fig. 4 에 나타낸 시계열의 2차 성분은 저주파수 영역의 대변형 응답과 관련이 있음을 짐작할 수 있다.
PPT Slide
Lager Image
Power spectral density of horizontal displacement of riser top(solid: simulation, dotted: prediction)
- 3.3 동적 응답 예측
파랑하중에 노출된 라이저에 대한 시스템 식별이 이루어졌으므로 임의의 파 스펙트럼에 노출된 라이저의 동적 응답을 도출된 주파수 응답함수와 Volterra 시리즈를 이용하여 예측하였다. 라이저의 동적 응답을 4개의 서로 다른 단기해상상태 하에서 예측하였으며, 단기해상상태는 식 (16)의 JONSWAP 스펙트럼으로 표현될 수 있음을 가정하였다.
PPT Slide
Lager Image
PPT Slide
Lager Image
여기서, Hs ωp 는 각각 유의파고와 파의 모달 주파수를 나타낸다. 해석에 적용된 해상상태는 유의파고 4.5m/6.5m와 모달 주기 10sec/12sec이 조합된 4가지 경우이다.
Fig. 6 은 4가지 단기해상상태 하에서의 라이저의 응답 시계열을 나타내는 것으로, 비선형 유한요소 해석을 통해 얻어진 결과와 주파수 응답함수를 Volterra 급수에 대입하여 예측된 결과를 상호 비교한 그림이다. 모든 해상상태에 대해 공히 1차 성분만을 고려한 경우 저주파수 응답 성분을 재현해 내지 못하고 있음을 확인 할 수 있는 반면, 2차 성분을 포함시키는 경우 비선형 유한 요소해석을 통해 얻어진 결과를 비교적 정확하게 재현해 내고 있음을 확인할 수 있다. Volterra 급수를 이용한 예측 결과와 수치 해석 결과의 차이는 Hs = 6.5, Tp = 12인 경우 다른 3개의 해상 상태와 달리 파랑 주파수 영역에서 약간의 차이를 보이고 있는데 이러한 경향에 대한 이유는 현재로서는 명확하지 않으며 추가적인 연구를 통해 규명되어질 필요가 있다.
PPT Slide
Lager Image
Time history of the horizontal displacement of riser top for different sea state(solid: simulation, dotted: prediction)
Fig. 7 Hs = 4.5, Tp = 10인 해상상태에 대한 응답의 합 및 차 주파수 성분을 따로 떼어내어 비교 분석한 그림이다. 앞서 언급된 바와 같이 응답의 합 주파수 성분은 무시할 수 있을 만큼 작은 값을 보이고 있음을 볼 수 있으며, 반대로 차 주파수 성분은 구조물의 응답에 지대한 영향을 끼침을 확인할 수 있다. 그림에서 확인할 수 있는 바와 같이 차 주파수 성분의 대부분은 저주파로 진동하는 구조물의 응답과 관련이 있다.
PPT Slide
Lager Image
Sum and difference frequency component(Hs=4.5m, Tp=10sec) (solid: simulation, dotted: prediction)
Fig. 8 은 검토된 4개의 해상상태에서의 구조물 응답 시계열에 대한 응답 스펙트럼을 나타낸다. 모든 해상상태에 대해서 1차 성분만 고려한 예측 결과의 경우 저주파수 영역에 나타나는 에너지 성분을 전혀 재현해 내지 못하고 있음을 확인할 수 있는 반면, 2차 성분을 추가적으로 고려한 경우 저주파 응답을 비교적 정확하게 재현해 냄을 확인할 수 있다. 저주파 응답에 대한 예측은 해상 상태에 따라 조금씩 다른 정확도를 보이고 있는데, 이는 구조물의 대변형으로 인한 비선형 성분을 네트워크가 엄밀하게 식별해 내지 못한 결과인 것으로 판단된다. 또한, 앞서 언급된 바와 같이 Hs = 6.5, Tp = 12의 경우 2차 성분을 고려한 예측 결과는 파랑 주파수 대역에서 수치 해석의 결과를 과대 평가하는 경향을 보임을 알 수 있다.
PPT Slide
Lager Image
Power spectral density of the horizontal displacement of riser top for different sea state
4. 결 론
본 논문에서는 NARX 모델을 이용하여 파랑하중을 받는 라이저에 대한 주파수 응답함수를 추출하고, 추출된 주파수 응답함수를 Volterra 급수에 대입하여 라이저 동적 응답의 시계열을 추정하였다. 본 연구의 내용을 토대로 다음과 같은 결론을 도출하였다.
인공 신경망 기법 기반의 비선형 시스템 식별법인 NARX 모델을 이용하여 파랑하중을 받는 라이저의 동적 응답에 대한 시스템 식별을 수행하고, 조화진단 기법을 이용해 주파수 응답함수를 도출하였다. 또한, 도출된 주파수 응답함수를 Volterra 급수와 결합하여 임의의 불규칙 파랑 하중에 노출되는 라이저의 동적 응답을 예측하는 시도를 하였다.
예측 결과의 시계열을 분석한 결과 1차 성분만을 고려한 예측 결과는 수치 해석을 통해 얻어진 라이저의 응답을 근사적으로 재현해 낼 수 있었으나 파 저항력의 제곱 성분에 의해 야기된 것으로 추정되는 저주파 응답을 재현하지는 못함을 확인하였다.
파 저항력의 합 주파수 성분에 의해 야기되는 고주파 응답은 유체입자와 구조물 변형 속도의 제곱에 비례하는 감쇠력에 의해 빠르게 감쇠하는 것으로 판단되며, 이는 조화진단 기법으로 추정된 2차 합 주파수 응답함수를 통해서 확인이 가능하였다.
응답 스펙트럼을 분석한 결과 1차 성분만을 고려한 예측 결과는 파 주파수 영역의 응답을 정확하게 예측하고 있음을 확인할 수 있었으나, 비선형 효과로 인해 야기되는 저주파 응답을 재현해 내지 못함을 확인하였다. 2차 성분을 추가적으로 고려한 경우 저주파 응답까지 비교적 정확하게 예측함을 알 수 있었다
본 연구에서 적용된 라이저의 동적응답 예측 기법은 다양한 형태의 파랑 하중에 노출되는 해양구조물의 설계 조건 선정에 매우 유용하게 적용될 수 있으리라 판단된다. 또한, 일반적으로 저주파로 응답하는 2차 성분까지 고려되는 플로터가 존재하는 경우에도 본 기법의 성능은 저하되지 않을 것으로 예측된다.
예측 결과의 정확도는 NARX 모델의 네트워크 파라미터의 정확도와 관련이 깊은데, 이는 네트워크의 설계, 입력 값의 길이 및 뉴련의 개수 등을 조절함으로써 그 정확도의 향상을 도모할 수 있을 것으로 기대되며 이는 추가적인 연구의 중요한 테마로 여겨진다.
Acknowledgements
본 논문은 산업통상자원부 해양플랜트 특성화대학의 지원을 받아 수행되었습니다. 본 논문은 2013년도 인하대학교의 지원에 의하여 연구되었습니다.
BIO
김 유 일
View Fulltext  
Bedrosian E. , Rice S.O. 1971 The Output Properties of Volterra Systems Driven by Harmonic and Gaussian Inputs Proceedings IEEE 59 (12) 1688 - 1707
Billings S.A. , Tsang K.M 1989 Spectral Analysis for Nonlinear System, part I : Parametric non-Linear Spectral Analysis Mechanical Systems and Signal Processing 3 (4) 319 - 339
Chance J.E. , Worden K. , Tomlinson G.R 1998 Frequency Domain Analysis of NARX Neural Networks Journal of Sound and Vibration 213 (5) 915 - 941
Hong N.S. 1999 Nonlinear Dynamic Analysis of Deep Water Riser by the Utilization on the Kinematic Constraint Condition Journal of the Computational Structural Engineering Institute of Korea 12 (3) 495 - 508
Hong Y.P. , Koterayama W 2004 An experimental and numerical study on dynamics of a flexible riser Proceedings of the Annual Autumn Meeting of the Society of Naval Architects of Korea Sancheong 20-22 October 2004 652 - 661
Hosseini Kordkheili S.A. , Bahai H. 2011 An updated Lagrangian Finite Element Formulation for Large Displacement Dynamic Analysis of Three-Dimensional Flexible Riser Structures Ocean Engineering 38 (5) 793 - 803
Kim H.J. , Hong S.Y. , Kim J.H. 2002 Experimental Study on Slow Drift Motion Damping Journal of the Society of Naval Architects of Korea 39 (4) 24 - 31    DOI : 10.3744/SNAK.2002.39.4.024
Lee S.C. , Goo J.S. , Ha Y.R. , Jo H.J. 2012 A Dynamic Structural Response Analysis of Tension Leg Platforms in Current and Waves Journal of the Korean Society for Power System Engineering 16 (1) 65 - 71
Low Y.M. , Langley R.S. 2008 A Hybrid Time/Frequency Domain Approach for Efficient Coupled Analysis of Vessel/ Mooring/ Riser Dynamics Ocean Engineering 35 (5) 433 - 446
Low Y.M. 2011 Extending a Time/Frequency Domain Hybrid Method for Riser Fatigue Analysis Applied Ocean Research 33 (2) 79 - 87
Mackay D.J.C. 1992 Bayesian Interpolation Neural Computation 4 415 - 447
Mazaheri S. , Downie M.J. 2004 Response-based Method for Determining the Extreme Behavior of Floating Offshore Platforms Ocean Engineering 32 (3) 363 - 393
Peng Z.K. , Lang Z.Q. , Wolters C. , Billings S.A. , Worden K. 2010 Feasibility Study of Structural Damage Detection using NARMAX Modeling and Nonlinear Output Frequency Response Function based Analysis Mechanical Systems and Signal Processing 25 (3) 1045 - 1061
Pina A.C. , Pina A.A. , Albrecht C.H. , Lima B.S.L.P. , Jacob B.P. 2013 ANN-based Surrogate Models for the Analysis of Mooring Lines and Risers Applied Ocean Research 41 76 - 86
Rodrigues M.V. , Correa F.N. , Jacob B.P 2007 Implicit Domain Decomposition Methods for Coupled Analysis of Offshore Platform Communications in Numerical Methods in Engineering 23 (6) 599 - 621
Vazquez-Hernandez A. , Ellwanger G. , Sagrilo L. 2011 Long-Term Response Analysis of FPSO Mooring Systems Applied Ocean Research 33 (4) 375 - 383
Wray J. , Green G.G.R. 1994 Calculation of the Volterra Kernels of Nonlinear Dynamic System using an Artificial Neural Network Biological Cybernetics 71 (3) 187 - 195
Yasseri S.F. , Bahai H. , Bazargan H. , Aminzadeh A. 2010 Prediction of Safe Sea-State using Finite Element Method and Artificial Neural Network Ocean Engineering 37 (2) 200 - 207