Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta
Effects of Concentration and Reaction Time of Trypsin, Pepsin, and Chymotrypsin on the Hydrolysis Efficiency of Porcine Placenta
Food Science of Animal Resources. 2014. Apr, 34(2): 151-157
Copyright © 2014, Korean Society for Food Science of Animal Resources
  • Received : August 17, 2013
  • Accepted : February 10, 2014
  • Published : April 30, 2014
Export by style
Cited by
About the Authors
Kyung-Hun, Jung
Department of Bio-Industrial Technologies, Konkuk University, Seoul 143-701, Korea
Ye-Chul, Choi
Department of Bio-Industrial Technologies, Konkuk University, Seoul 143-701, Korea
Ji-Yeon, Chun
Department of Bio-Industrial Technologies, Konkuk University, Seoul 143-701, Korea
Sang-Gi, Min
Department of Bio-Industrial Technologies, Konkuk University, Seoul 143-701, Korea
Geun-Pyo, Hong

This study investigated the effects of three proteases (trypsin, pepsin and chymotrypsin) on the hydrolysis efficiency of porcine placenta and the molecular weight (Mw) distributions of the placental hydrolysates. Because placenta was made up of insoluble collagen, the placenta was gelatinized by applying thermal treatment at 90 ℃ for 1 h and used as the sample. The placental hydrolyzing activities of the enzymes at varying concentrations and incubation times were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel permeation chromatography (GPC). Based on the SDS-PAGE, the best placental hydrolysis efficiency was observed in trypsin treatments where all peptide bands disappeared after 1 h of incubation as compared to 6 h of chymotrypsin. Pepsin hardly hydrolyzed the placenta as compared to the other two enzymes. The Mw distribution revealed that the trypsin produced placental peptides with Mw of 106 and 500 Da. Peptides produced by chymotrypsin exhibited broad ranges of Mw distribution (1-20 kDa), while the pepsin treatment showed Mw greater than 7 kDa. For comparisons of pre-treatments, the subcritical water processing (37.5 MPa and 200 ℃ of raw placenta improved the efficiency of tryptic digestions to a greater level than that of a preheating treatment (90 ℃ for 1 h). Consequently, subcritical water processing followed by enzymatic digestions has the potential of an advanced collagen hydrolysis technique.
Collagen is an abundant protein in animal skin and organs. Collagen is composed of a triple-helix of chain structures repeated with glycine-X-Y where X and Y are predominantly proline and hydroxyproline (Miller, 1988) . Collagen has not attracted interest from a nutritional perspective because of its poor composition of sulfur-containing amino acids. However, collagen-derived hydrolysates are considered as an important functional food as well as the pharmaceutical and cosmetic industries (Zhang ., 2006) .
It is a relatively new concept that low molecular weight (Mw) peptides possess various advantageous nutritional and physiological functions. These functions include physicochemical properties (solubility, emulsifying, water binding, and foaming capacity), antioxidant activity, antihypertensive activity, antimicrobial activity and antianemia activity (He ., 2013) . Besides these functions, moisturizing, softening and skin reproducing functions have enabled collagen hydrolysates to be a focus in bio-industry (Yorgancioglu and Bayramoglu, 2013) .
Until now, commercial collagen hydrolysis has been achieved by acid or alkali treatment, although proteases have also been used to obtain low Mw collagen peptides. Acid or alkali hydrolysis is an approved economical process (Denis ., 2008) ; however, acid-hydrolyzed collagen must be neutralized and desalted. In addition, acid and alkali hydrolysis require a long processing time (about 24 h). Enzymatic processing is an alternative to produce commercial collagen peptides. Various proteases including trypsin, pepsin, chymotrypsin, alcalase, collagenase, and papain are applicable depending on the purpose of the final products (Gómez-Guillén ., 2011) .
Applying subcritical water is a novel technique to degrade organic compounds, including proteins, carbohydrates and lipids; hence, it is commercially used for waste processing (Yang ., 1997) . The critical point of water is 374℃ at 22 MPa at which water ionizes readily to hydrogen and hydroxide ions and the hydrogen ions cause the disruption of peptide bonds (Brunner, 2009 ; Watchararuji ., 2008) . We found in a previous study that subcritical water processing hydrolyzed animal by-product collagen (Lee ., 2013) . Both conversion of collagen to gelatin and partial hydrolysis of gelatin occur during subcritical water processing, however, the majority of the gelatin hydrolysates have Mw > 10 kDa, which limits subcritical water processing as a collagen hydrolyzing technology.
Collagen peptides of 1-2 kDa are recommended as functional food or cosmetic ingredients and enzymatic digestion is essential (Chai ., 2010) . Numerous proteases can be used for protein hydrolysis, but the actual activity and efficiency of these enzymes on animal by-product collagen have rarely been compared. Therefore, we compared the effects of three representative enzymes (trypsin, pepsin, and chymotrypsin) on hydrolysis of porcine placenta and Mw distribution of the placental hydrolysates. In addition, effect of subcritical water processing on the enzymatic digestion and Mw characteristics of placental peptides was also explored.
Materials and Methods
- Materials
Frozen porcine placenta was donated by Samwoo Husbandry (Korea). The frozen placenta was thawed in running water for 4 h and washed to remove residual blood. All visible fat was trimmed, and the placenta was cut into 5 cm lengths. Crude protein (5.8%) and moisture contents (92.2%) of the placenta were determined by Kjeldahl (% N ×6.25) and a 102℃ air drying AOAC (1990) method, respectively. The placenta was vacuum-packaged and frozen at ˗50℃ prior to use (within 2 mon). Trypsin (T4549), pepsin (P6887), and chymotrypsin (C4129) were purchased from Sigma-Aldrich Co. (USA), and used without further processing ( Table 1 ). All chemicals were analytical grade.
- Pretreatment
Placenta was thawed at 4℃ overnight and homogenized using a SMT homogenizer (SMT Co., Ltd., Japan) at 14,000 rpm for 5 min. A preliminary study indicated that raw placenta does not undergo hydrolysis in various concentrations of trypsin ( Fig. 1 ), hence, the placenta was pretreated to convert the collagen to soluble gelatin. The raw collagen suspension was transferred to a 50 mL test tube and heated in a 90℃ water bath for 1 h, then cooled to 30℃ in water. Subcritical water processing was conducted using a high pressure device as described previously (Lee ., 2013) . Raw placenta was inserted into the pressure vessel and pressurized to 37.5 MPa. The temperature was increased to 200℃ while maintaining pressure. When the inside of the vessel reached the target temperature (~90 min), the vessel was cooled to 40℃ in ice.
Characteristics and activity of selected enzymes
PPT Slide
Lager Image
Characteristics and activity of selected enzymes
PPT Slide
Lager Image
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of raw and preheated (90℃ for 1 h) porcine placenta after a 24 h incubation with various concentrations of trypsin.
- Hydrolysis procedure
Selected enzyme stock was prepared by dissolving an adequate enzyme concentration in water. The enzyme solutions were mixed with pretreated placenta suspensions and incubated for 24 h at 37℃. Based on the product information, the trypsin stock was prepared to contain 25 BAEE unit/mg enzyme in the mixture, whereas pepsin and chymotrypsin were prepared to contain 40 units/mg in the mixture. Enzyme concentration was controlled by diluting the stock solution with distilled/deionized water. At given times, the mixture was removed from the incubator and heated to 70℃ for 30 min to inactivate the enzyme. The sample was kept at ambient temperature for 1 h and used for analysis.
- Gel electrophoresis
The pretreated placenta and enzyme mixture was transferred to a test tube and vortexed vigorously. Aliquots of 100 μL of sample were diluted with 400 μL of 8 M urea (final protein concentration, 4 mg/mL). Peptide profiles of samples were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using 12% acrylamide gels (EzWay TM PAG, KOMA Biotech Inc., Korea) based on the method of Laemmli (1970) . Samples were mixed with one part sample buffer (KTG020, KOMA Biotech Inc., Korea), consisting of 10% glycerol, 2% SDS, 0.003% bromophenol blue, 5% β-mercaptoethanol, and 63 mM Tris (pH 6.8). The sample was boiled for 2 min and 20 μL of the sample mixture was loaded into gel wells. Peptide separation was performed at a constant voltage of 140 V. Pre-stained marker (K18000, EzWay TM , protein-preblue marker, KOMA Biotech Inc., Korea) was used as Mw standard.
- Molecular weight distribution
The Mw distribution of the placenta hydrolysates was determined by the method of Gu . (2011) with minor modifications. The pretreated placenta and enzyme mixture was centrifuged at 10,000×g for 5 min. Gel permeation chromatography (GPC) was performed on the supernatant using a YL 9100 high performance liquid chromatography system (Younglin Instrument Co. Ltd., Korea) equipped with three Ultrahydrogel TM 120 columns (7.8× 3,000 mm, Waters, USA). The mobile phase was distilled/ deionized water at a flow rate of 1 mL/min, and the Mw distributions of the collagen peptides were monitored using a YL 9100 refractive index detector (YL Instrument Co. Ltd., Korea) at 40℃. A Mw standards kit (106- 20,100 Da, Polymer Standards Service, Mainz, Germany) was used as the standards.
- Statistical analysis
A completely randomized design was adopted to evaluate the effect of enzyme concentration, incubation time as well as subcritical water processing using a SAS statistical program (SAS Institute, USA). Each determination was performed in triplicate, and the entire experiment was repeated three times. Representative data are presented. A p <0.05 was considered significant.
Results and Discussion
- Trypsin-catalyzed placental hydrolysis
As depicted in Fig. 2A , trypsin displayed good hydrolyzing activity for porcine placenta. The porcine placenta was composed of four peptides near 200 and 100 kDa. The former indicates α-chains which have M w of 116 kDa and the latter were β-chains (205 kDa) as revealed in other studies (Ahmad ., 2010 ; Klomklao ., 2006 ; Liu ., 2012) . The collagen peptides completely disappeared when the sample was reacted with trypsin for 1 h, indicating that the placenta acted as a good substrate for trypsin. The catalytic action of trypsin hydrolyze the placenta was verified when enzyme concentration was reduced. No peptide bands were detected even if the enzyme concentration was decreased from 25.0 to 6.25 BAEE unit/mg. It is well recognized that trypsin has optimum activity at pH 7-9 (Sipos and Merkel, 1970) . The placental suspension (~pH 6.3) provided an optimum environment for trypsin activity, resulting in good tryptic placental digestion.
The peptide profiles of the placental hydrolysates revealed that trypsin produced mainly two groups of peptides, one group with a relatively high Mw (>20 kDa) and the other with a Mw of about 626 and 106 Da after a 1 h incubation ( Fig. 2B ). Tryptic hydrolysis continued with increasing incubation time and the high Mw peptide peaks shifted toward the lower Mw range and the number of low Mw peptides increased. After 12 h incubation, the predominant peptide peaks obtained were <1 kDa. In particular, the main peptide peaks were identified at 106 and 500 Da. Based on the Mw calculation, these peptides seemed to be composed of 1-5 amino acids. These results were identical when enzyme concentration was reduced. The lower the enzyme concentration, the higher the Mw distribution in the high Mw peptide group. However, the main Mw peaks were obtained at 106 and 500 kDa regardless of enzyme concentration.
PPT Slide
Lager Image
Effects of trypsin concentration and incubation time on (A) sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern and (B) molecular weight distribution of preheated (90℃ for 1 h) porcine placenta hydrolysates. The placenta and enzyme mixture was incubated at 37℃.
Consequently, trypsin showed good activity, producing low Mw collagen peptides (< 1 kDa) for use in functional foods. This activity resulted from specific cleavage site in substrates. Although, trypsin cleaves the C-terminal to arginine and lysine residues (Olsen ., 2004) , Rodriguez . (2008) postulated that it tends to cleave before proline. Proline is the most abundant amino acid in porcine placenta followed by glycine (Lee ., 2013) which increased susceptibility to tryptic digestion.
- Pepsin-catalyzed placental hydrolysis
The peptide bands in the placenta were not affected by pepsin treatment until 6 h of incubation, and hydrolysis occurred after 12 h ( Fig. 3A ). The peptide bands detected at < 36.5 kDa disappeared if incubation time was extended to 24 h. Maximum activity of pepsin occurs at about pH 2, and pepsin is inactivated in neutral or alkaline conditions (Johnston ., 2007) . Based on the pH of the placental suspension (~pH 6.3), pepsin seemed to be inadequate to hydrolyze the porcine placenta. According to the SDS-PAGE pattern, two peptide bands (20 and 37 kDa) were detected after 24 h incubation. The GPC pattern also indicated that low Mw peptide peaks (< 20 kDa) were not observed after a 6 h incubation ( Fig. 3B ). A new Mw peak was detected near 10 kDa after 12 h of incubation and the major peaks were present at >20 kDa. Low Mw peak hydrolysates were observed at 7 kDa and < 626 Da after 24 h incubation, however, the main portion of the peptides still existed at > 20 kDa.
Because of the poor collagen hydrolyzing activity of pepsin, decreasing the enzyme concentration resulted in relatively high Mw peptides according to both SDS-PAGE and GPC. Therefore, pepsin must be excluded as a collagen- hydrolyzing enzyme at near neutral conditions. The poor activity of pepsin could be explained by its protein cleaving sites, i.e., pepsin specifically cleaves the peptide bonds between hydrophobic and aromatic residues (Fruton, 1970 ; Kageyama, 2004) , and showed limited and slow peptic digestion of the placenta. Consequently, the results indicate that pepsin cannot efficiently cleave porcine collagen because of the limited number of aromatic amino acids and inappropriate pH (Johnston ., 2007 ; Lee ., 2013) .
PPT Slide
Lager Image
Effects of pepsin concentration and incubation time on (A) sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern and (B) molecular weight distribution of preheated (90℃ for 1 h) porcine placenta hydrolysates. The placenta and enzyme mixture was incubated at 37℃.
- Chymotrypsin-catalyzed placental hydrolysis
Chymotrypsin had potential application as a placental hydrolysis enzyme (Fig. 4A ). Chymotrypsin-catalyzed collagen hydrolysis occurred after 1 h incubation, and the collagen chains revealed a different susceptibility to this enzyme. According to the SDS-PAGE pattern, the α-chains of placental collagen (~116 kDa) digested gradually and completely disappeared after 6 h incubation. Meanwhile, β-chain (~205 kDa) digestion was initiated faster than that of the α-chains, and β-chain band intensity was smeared when new peptide bands appeared at < 69 kDa after 1 h incubation. The hydrolysate bands disappeared completely after the 6 h incubation with the exception of a 37 kDa peptide that lost its intensity after 12 h incubation. No visual difference in the SDS-PAGE pattern between 30 and 40 units/mg concentrations was observed. However, decreasing the enzyme concentration to 20 unit/mg resulted in minor bands at 20-30 kDa, and the bands were intense at an enzyme concentration of 10 units/mg.
PPT Slide
Lager Image
Effects of chymotrypsin concentration and incubation time on (A) sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern and (B) molecular weight distribution of preheated (90℃ for 1 h) porcine placenta hydrolysates. The placenta and enzyme mixture was incubated at 37℃.
The peptides hydrolyzed by chymotrypsin had relatively high Mw (> 20 kDa) until 6 h of incubation ( Fig. 4B ). After 12 h incubation, a new peak was generated at 7 kDa, though the major Mw peaks were still detected at > 20 kDa. Increases in the low Mw peaks (1.4 kDa and < 434 Da) were obtained, but the half peak dimension belonged to the 20 kDa peptides. The lower the enzyme concentration, the higher the Mw distribution of placental hydrolysates.
PPT Slide
Lager Image
Gel permeation chromatography pattern of preheated (90℃ for 1 h) and subcritical water processed (37.5MPa and 200℃) porcine placenta hydrolysates incubated with 25.0 BAEE unit/mg trypsin at 37℃ for 24 h.
Although chymotrypsin exhibited less impact on collagen hydrolysis compared to trypsin, it was difficult to directly compare the hydrolyzing activity between the two enzymes due to differences in enzyme concentrations. Chymotrypsin preferentially cleaves peptide bonds connected with tyrosine, tryptophan, and phenylalanine (Appel, 1986 ; Ma ., 2005 ; Vajda and Szabo, 1976) . It is likely that the different substrate specificity of this enzyme caused different trypsin hydrolyzing activities, and an increase in enzyme concentration was required to observe the effect of chymotrypsin on placental hydrolysis. However, it should be noted that the commercial chymotrypsin product had a maximum activity of 40 units/mg. Consequently, it was expected that chymotryptic digestion would be successful by increasing the enzyme concentration, which warrants further exploration.
- Substrate processing
As discussed earlier, insoluble collagen is not hydrolyzed by proteases; thus, all of the placenta were initially preheated to convert insoluble collagen to soluble gelatin. This preheating treatment was eventually replaced with subcritical water processing, and the samples were treated with trypsin ( Fig. 5 ). The results revealed that subcritical water processing alone was unable to produce low Mw peptides, and the major peak was observed at about 10 kDa, reflecting a limited collagen hydrolyzing effect of subcritical processing (Lee ., 2013) . Tryptic digestion of the subcritical water processed placenta produced a major peak at 626 Da with a minor peak at about 1 kDa. Although no peak was observed at 106 Da (free amino acids), subcritical processing seemed to be a better placental pre-treatment than preheating to produce low Mw placental hydrolysates.
Concluding Remarks
The present study demonstrated the effects of proteases on hydrolysis activity of porcine placenta. The insoluble collagen had to be converted to soluble gelatin for the enzymes to act. This conversion procedure is traditionally conducted by thermal treatment, however, subcritical water processing allowed the protease to hydrolyze the placenta effectively. Because of differences in substrate specificity and optimum conditions, trypsin was the best enzyme to hydrolyze placenta. However, pepsin and chymotrypsin might be applicable if experimental conditions are optimized for these enzymes, which warrant further exploration.
Financial support for this study was obtained from the Korean Institute of Planning and Evaluation for Technology in Food, Agriculture, Forest, and Fisheries, Korea (iPET Project No. 311029-3).
Ahmad M. , Benjakul S. , Nalinanon S. 2010 Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterus monoceros) Food Hydrocolloid 24 588 - 594    DOI : 10.1016/j.foodhyd.2010.03.001
AOAC 1990 Official methods of analysis 15th ed Association of Official Analytical Chemists Washington, DC
Appel W. 1986 Chymotrypsin: molecular and catalytic properties Clin. Biochem. 19 317 - 322    DOI : 10.1016/S0009-9120(86)80002-9
Brunner G. 2009 Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes J. Supercritical Fluid. 47 373 - 381    DOI : 10.1016/j.supflu.2008.09.002
Chai H. J. , Li J. H. , Huang H. N. , Li T. L. , Chan Y. L. , Shiau C. Y. , Wu C. J. 2010 Effects of sizes and conformations of fish-scale collagen peptides on facial skin qualities and transdermal penetration efficiency J. Biomed. Biotechnol. 2010 1 - 9
Denis A. , Brambati N. , Dessauvages B. , Guedj S. , Ridoux C. , Meffre N. , Autier C. 2008 Molecular weight determination of hydrolyzed collagens Food Hydrocolloid 22 989 - 994    DOI : 10.1016/j.foodhyd.2007.05.016
Fruton J. S. 1970 The specificity and mechanism of pepsin action Adv. Enzymol. Relat. Areas Mol. Bio. 33 401 - 443
Gómez-Guillén M. C. , Giménez B. , López-Caballero M. E. , Montero M. P. 2011 Functional and bioactive properties of collagen and gelatin from alternative sources: A review Food Hydrocolloid 25 1813 - 1827    DOI : 10.1016/j.foodhyd.2011.02.007
Gu R. Z. , Li C. Y. , Liu W. Y. , Yi W. X. , Cai M. Y. 2011 Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin Food Res. Int. 44 1536 - 1540    DOI : 10.1016/j.foodres.2011.04.006
He S. , Franco C. , Zhang W. 2013 Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP) Food Res. Int. 50 289 - 297    DOI : 10.1016/j.foodres.2012.10.031
Johnston N. , Dettmar P. W. , Bishwokarma B. , Lively M. O. , Koufman J. A. 2007 Activity/stability of human pepsin: Implications for reflux attributed laryngeal disease Laryngoscope 117 1036 - 1039    DOI : 10.1097/MLG.0b013e31804154c3
Kageyama T. 2004 Role of S’1 loop residues in the substrate specificities of pepsin A and chymosin Biochem 43 15122 - 15130    DOI : 10.1021/bi048440g
Klomklao S. , Benjakul S. , Visessanguan W. , Kishimura H. , Simpson B. K. 2006 Proteolytic degradation of sardine (Sardinella gibbosa) proteins by trypsin from skipjack tuna (Katsuwonus pelamis) spleen Food Chem. 98 14 - 22    DOI : 10.1016/j.foodchem.2005.05.047
Laemmli U. K. 1970 Cleavage of structural proteins during assembly of head of bacteriophage T4 Nature 227 680 - 685    DOI : 10.1038/227680a0
Lee M. Y. , Choi Y. C. , Chun J. Y. , Min S. G. , Hong G.P. 2013 Effects of High Pressure/High Temperature Processing on the Recovery and Characteristics of Porcine Placenta Hydrolysates Korean Journal for Food Science of Animal Resources 33 (4) 474 - 480    DOI : 10.5851/kosfa.2013.33.4.474
Liu D. , Liang L. , Regenstein J. M. , Zhou P. 2012 Extraction and characterization of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis) Food Chem 133 1441 - 1448    DOI : 10.1016/j.foodchem.2012.02.032
Ma W. , Tang C. , Lai L. 2005 Specificity of trypsin and chymotrypsin: Loop-motion-controlled dynamic correlation as a determinant Biophys. J. 89 1183 - 1193    DOI : 10.1529/biophysj.104.057158
Miller E. J. , Nimni M. E. 1988 Collagen CRC Press Boca Raton
Olsen J. V. , Ong S. , Mann M. 2004 Trypsin cleaves exclusively C-terminal to arginine and lysine residues Mol. Cell Proteomics 3 608 - 614    DOI : 10.1074/mcp.T400003-MCP200
Rodriguez J. , Gupta N. , Smith R. D. , Prevner P. A. 2008 Does trypsin cut before proline? J. Proteome Res. 7 300 - 305    DOI : 10.1021/pr0705035
Sipos T. , Merkel J. R. 1970 An effect of calcium ions on the activity, heat stability, and structure of trypsin Biochem 9 2766 - 2775    DOI : 10.1021/bi00816a003
Vajda T. , Szabo T. 1976 Specificity of trypsin and alpha-chymotrypsin towards neutral substrates Acta Biochim. Biophys. Acad. Sic. Hung. 11 287 - 294
Watchararuji K. , Goto M. , Sasaki M. , Shotiprunk A. 2008 Value-added subcritical water hydrolysate from rice bran and soybean meal Bioresour. Technol. 99 6207 - 6213    DOI : 10.1016/j.biortech.2007.12.021
Yang Y. , Hawthorne S. B. , Miller D. J. 1997 Classselective extraction of polar, moderately polar, and nonpolar organics from hydrocarbon wastes using subcritical water Environ. Sci. Technol. 31 430 - 437    DOI : 10.1021/es960242s
Yorgancioglu A. , Bayramoglu E. E. 2013 Production of cosmetic purpose collagen containing antimicrobial emulsion with certain essential oils Ind. Crop. Prod. 44 378 - 382    DOI : 10.1016/j.indcrop.2012.11.013
Zhang Z. , Li G. , Shi B. 2006 Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes J. Society Leather Technol. Chem. 90 23 - 28